# Intersection of conjugated solvable subgroups in symmetric groups 

Anton Baykalov<br>Novosibirsk State University, Novosibirsk, Russia

Assume that a finite group $G$ acts on a set $\Omega$. An element $x \in \Omega$ is called a $G$-regular point if $|x G|=|G|$, i.e. if the stabilizer of $x$ is trivial. Define the action of the group $G$ on $\Omega^{k}$ by the rule

$$
g:\left(i_{1}, \ldots, i_{k}\right) \mapsto\left(i_{1} g, \ldots, i_{k} g\right)
$$

If $G$ acts faithfully and transitively on $\Omega$, then the minimal number $k$ such that the set $\Omega^{k}$ contains a $G$-regular point is called the base size of $G$ and is denoted by $b(G)$. For a positive integer $m$ the number of $G$-regular orbits on $\Omega^{m}$ is denoted by $\operatorname{Reg}(G, m)$ (this number equals 0 if $m<b(G)$ ). If $H$ is a subgroup of $G$ and $G$ acts by the right multiplication on the set $\Omega$ of right cosets of $H$ then $G / H_{G}$ acts faithfully and transitively on the set $\Omega$. (Here $H_{G}=\cap_{g \in G} H^{g}$.) In this case, we denote $b\left(G / H_{G}\right)$ and $\operatorname{Reg}\left(G / H_{G}, m\right)$ by $b_{H}(G)$ and $\operatorname{Reg}_{H}(G, m)$ respectively.

Thus $b_{H}(G)$ is the minimal number $k$ such that there exist elements $x_{1}, \ldots, x_{k} \in G$ for which

$$
H^{x_{1}} \cap \ldots \cap H^{x_{k}}=H_{G}
$$

Consider the problem 17.41 from "Kourovka notebook" [1]:
Let $H$ be a solvable subgroup of finite group $G$ and $G$ does not contain nontrivial normal solvable subgroups. Are there always exist five subgroups conjugated with $H$ such that their intersection is trivial?

The problem is reduced to the case when $G$ is almost simple in [2]. Specifically, it is proved that if for each almost simple group $G$ and solvable subgroup $H$ of $G$ condition $\operatorname{Reg}_{H}(G, 5) \geq 5$ holds then for each finite nonsolvable group $G$ and solvable subgroup $H$ of $G$ condition $\operatorname{Reg}_{H}(G, 5) \geq 5$ holds.

We have proved the following theorem.
Theorem 1. Let $H$ be a solvable subgroup of an almost simple group $G$ whose socle is isomorphic to $A_{n}, n \geq 5$. Then $\operatorname{Reg}_{H}(G, 5) \geq 5$. In particular $b_{H}(G) \leq 5$.

## References

[1] Kourovka notebook; Edition 18, Novosibirsk 2014.
[2] E. P. Vdovin, On the base size of a transitive group with solvable point stabilizer. Journal of Algebra and Application. 11 (2012), N 1, 1250015 (14 pages)

