On Automorphisms of Distance-Regular Graph with Intersection Array $\{99,84,1 ; 1,12,99\}$

Ivan Belousov
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

We consider undirected graphs without loops or multiple edges. Given a vertex a in a graph Γ, let denote the i-neighborhood of a, i.e., the subgraph induced by Γ on the set of all its vertices that are a distance of i away from a. Let $[a]=\Gamma_{1}(a)$ and $a^{\perp}=\{a\} \cup[a]$.

If u and w are vertices separated by a distance of i in Γ, then $b_{i}(u, w)\left(c_{i}(u, w)\right)$ denotes the number of vertices in the intersection of $\Gamma_{i+1}(u)\left(\Gamma_{i-1}(u)\right)$ with $[w]$. A graph Γ of diameter d is called a distanceregular graph with an intersection array $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, \ldots, c_{d}\right\}$ if the values $b_{i}(u, w)$ and $c_{i}(u, w)$ are independent of the choice of vertices u and w separated by a distance of i in Γ for any $i=0, \ldots, d$. Let $a_{i}=k-b_{i}-c_{i}$. Note that, for a distance-regular graph, b_{0} is the degree of the graph and $c_{1}=1$. Given a subset X of automorphisms of Γ, let $\operatorname{Fix}(X)$ denote the set of all vertices of Γ that are fixed under any automorphism from X. Let $p_{i j}^{l}(x, y)$ denote the number of vertices in the subgraph $\Gamma_{i}(x) \cap \Gamma_{j}(y)$ for vertices x and y separated by a distance of l in Γ. In a distanceregular graph, the numbers $p_{i j}^{l}(x, y)$ are independent of the choice of x and y; they are denoted by $p_{i j}^{l}$ and are known as the intersection numbers of Γ.

Let $\alpha_{i}(g)$ denote the number of points $u \in \Gamma$ such that $d\left(u, u^{g}\right)=i$ for $g \in \operatorname{Aut}(\Gamma)$.
Intersection arrays distance-regular graphs, in which neighborhoods of vertices are strongly regular with parameters $(99,14,1,2)$ were found in [1]: $\{99,84,1 ; 1,12,99\},\{99,84,1 ; 1,14,99\},\{99,84,30 ; 1,6,54\}$.

These abstracts are considered possible orders and subgraphs of fixed points hypothetical distanceregular graph with intersection array $\{99,84,1 ; 1,12,99\}$.

Theorem. Let Γ be a distance-regular graph with the intersection array $\{99,84,1 ; 1,12,99\}, G=$ $\operatorname{Aut}(\Gamma), g$ be an element of prime order p in G, and $\Omega=\operatorname{Fix}(g)$ contains at s vertices in the t antipodal classes. Then $\pi(G) \subseteq\{2,3,5,7,11\}$ and one of the following assertions holds:
(1) $s=0$ and either
(i) $p=5, \alpha_{1}(g)=100 l, \alpha_{2}(g)=800-100 l, \alpha_{3}(g)=0$, where $0 \leq l \leq 8$ or
(ii) $p=2, \alpha_{3}(g)=16 l, \alpha_{1}(g)=16 l-40 m$ for some $0 \leq l \leq 50$;
(2) $p=11, t=1$ and $\alpha_{1}(g)=220 l-44$;
(3) $p=7, \Omega$ is a t-clique and either
(i) $t=2, \alpha_{3}(g)=14, \alpha_{1}(g)=140 l+98$ or
(ii) $t=9, \alpha_{3}(g)=63, \alpha_{1}(g)=140 l-49$;
(4) $p=5, s=3, \alpha_{0}(g)=3 t$ и $t=15,20, \ldots, 35$;
(5) $p=3$ and either
(i) $s=2$ and $t \in\{1,4, \ldots, 25\}$ or
(ii) $s=5$ and $t=1,4,7, \ldots, 22$ or
(iii) $s=8$ and $t=1,4,7,10,13$;
(6) $p=2, t$ is even and either
(i) $s=2$ and $t \leq 28$ or
(ii) $s=4$ and $t \leq 28$ or
(iii) $s=6$ and $t \leq 18$ or
(iv) $s=8$ и $t \leq 12$.

Corollary. Let Γ be a distance-regular graph with the intersection array $\{99,84,1 ; 1,12,99\}$ and $G=\operatorname{Aut}(\Gamma)$ acts transitively on the set of vertices graph Γ. Then G is a $\{2,3,5\}$-group.

The work is supported by RFBR (project No. 14-01-31298-mol_a).

References

[1] Makhnev A.A., On graphs whose local subgraphs are strongly regular with parameters (99,14,1,2). Doklady Mathematics 88:3 (2013) 737-740.

