On Automorphisms of Distance-Regular Graph with Intersection Array {99,84,1;1,12,99}

Ivan Belousov

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

We consider undirected graphs without loops or multiple edges. Given a vertex a in a graph Γ , let denote the *i*-neighborhood of a, i.e., the subgraph induced by Γ on the set of all its vertices that are a distance of *i* away from a. Let $[a] = \Gamma_1(a)$ and $a^{\perp} = \{a\} \cup [a]$.

If u and w are vertices separated by a distance of i in Γ , then $b_i(u, w)$ $(c_i(u, w))$ denotes the number of vertices in the intersection of $\Gamma_{i+1}(u)$ $(\Gamma_{i-1}(u))$ with [w]. A graph Γ of diameter d is called a distanceregular graph with an intersection array $\{b_0, b_1, \ldots, b_{d-1}; c_1, \ldots, c_d\}$ if the values $b_i(u, w)$ and $c_i(u, w)$ are independent of the choice of vertices u and w separated by a distance of i in Γ for any $i = 0, \ldots, d$. Let $a_i = k - b_i - c_i$. Note that, for a distance-regular graph, b_0 is the degree of the graph and $c_1 = 1$. Given a subset X of automorphisms of Γ , let Fix(X) denote the set of all vertices of Γ that are fixed under any automorphism from X. Let $p_{ij}^l(x, y)$ denote the number of vertices in the subgraph $\Gamma_i(x) \cap \Gamma_j(y)$ for vertices x and y separated by a distance of l in Γ . In a distance-regular graph, the numbers $p_{ij}^l(x, y)$ are independent of the choice of x and y; they are denoted by p_{ij}^l and are known as the intersection numbers of Γ .

Let $\alpha_i(g)$ denote the number of points $u \in \Gamma$ such that $d(u, u^g) = i$ for $g \in \operatorname{Aut}(\Gamma)$.

Intersection arrays distance-regular graphs, in which neighborhoods of vertices are strongly regular with parameters (99,14,1,2) were found in [1]: $\{99,84,1;1,12,99\}$, $\{99,84,1;1,14,99\}$, $\{99,84,30;1,6,54\}$.

These abstracts are considered possible orders and subgraphs of fixed points hypothetical distanceregular graph with intersection array {99, 84, 1; 1, 12, 99}.

Theorem. Let Γ be a distance-regular graph with the intersection array $\{99, 84, 1; 1, 12, 99\}$, $G = Aut(\Gamma)$, g be an element of prime order p in G, and $\Omega = Fix(g)$ contains at s vertices in the t antipodal classes. Then $\pi(G) \subseteq \{2, 3, 5, 7, 11\}$ and one of the following assertions holds:

(1) s = 0 and either

(i) p = 5, $\alpha_1(g) = 100l$, $\alpha_2(g) = 800 - 100l$, $\alpha_3(g) = 0$, where $0 \le l \le 8$ or (ii) p = 2, $\alpha_3(g) = 16l$, $\alpha_1(g) = 16l - 40m$ for some $0 \le l \le 50$; (2) p = 11, t = 1 and $\alpha_1(g) = 220l - 44$; (3) p = 7, Ω is a *t*-clique and either

(i) $t = 2, \alpha_3(g) = 14, \alpha_1(g) = 140l + 98$ or

 $(ii) t = 9, \alpha_3(g) = 63, \alpha_1(g) = 140l - 49;$

- (4) $p = 5, s = 3, \alpha_0(g) = 3t$ u t = 15, 20, ..., 35;
- (1) $p = 3, s = 0, \alpha_0(g) =$ (5) p = 3 and either
- (5) p = 5 and either
 - (i) s = 2 and $t \in \{1, 4, ..., 25\}$ or
 - (*ii*) s = 5 and t = 1, 4, 7, ..., 22 or

(*iii*) s = 8 and t = 1, 4, 7, 10, 13;

- (6) p = 2, t is even and either
 - (i) s = 2 and $t \le 28$ or
 - (*ii*) s = 4 and $t \le 28$ or
 - (*iii*) s = 6 and $t \le 18$ or
 - $(iv) \ s = 8 \ \text{i} \ t \le 12.$

Corollary. Let Γ be a distance-regular graph with the intersection array $\{99, 84, 1; 1, 12, 99\}$ and $G = \operatorname{Aut}(\Gamma)$ acts transitively on the set of vertices graph Γ . Then G is a $\{2, 3, 5\}$ -group.

The work is supported by RFBR (project No. 14-01-31298-mol a).

References

 Makhnev A.A., On graphs whose local subgraphs are strongly regular with parameters (99,14,1,2). Doklady Mathematics 88:3 (2013) 737-740.