Automorphisms of strongly regular graph with parameters $(1197,156,15,21)$

Viktoria Bitkina, Alina Gutnova, Alexandr Makhnev
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

We consider nondirected graphs without loops amd multiple edges. For vertex a of a graph Γ the subgraph $\Omega_{i}(a)=\{b \mid d(a, b)=i\}$ is called i-neighboorhod of a in Γ. We set $[a]=\Gamma_{1}(a), a^{\perp}=\{a\} \cup[a]$.

Degree of an vertex a of Γ is the number of vertices in $[a]$. Graph Γ is called regular of degree k, if the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, μ) if Γ is regular of degree k on v vertices, and $|[u] \cap[w]|$ is equal λ, if u adjacent to w, is equal μ, if $d(u, w)=2$. Amply regular graph of diameter 2 is called strongly regular.

A partial geometry $p G_{\alpha}(s, t)$ is a geometry of points and lines such that every line has exactly $s+1$ points, every point is on $t+1$ lines (with $s>0, t>0$) and for any antiflag (P, y) there are exactly α lines z_{i} containing P and intersecting y. In the case $\alpha=1$ we have generalized quadrangle $G Q(s, t)$. The incidence system (X, \mathcal{B}) with a point-set X and block-set \mathcal{B} is called $t-(V, K, \Lambda)$ design, if $|X|=V$, each block contains exactly K points and any t points belong to exactly Λ blocks. Every 2-design is (V, B, R, K, Λ) design, where $B=|\mathcal{B}|$, each point belong to exactly R blocks, and we have equalities $V R=B K,(V-1) \Lambda=R(K-1)$. Design is symmetric, if $B=V$. Design is called quasi-symmetric, if for every two blocks $B, C \in \mathcal{B}$ we have $|B \cap C| \in\{x, y\}$. Numbers x, y are called intersection numbers of quasi-symmetric design, and it is suggested that $x<y$.

Block-graph of quasi-symmetric design (X, \mathcal{B}) have as a vertex set \mathcal{B} and two blocks $B, C \in \mathcal{B}$ are adjacent, if $|B \cap C|=y$.

Proposition 1 ([1], theorem 5.3). Block-graph of quasi-symmetric (V, B, R, K, Λ) design is strongly regular with spectrum $((R-1) K-x B+x) /(y-x)^{1},(R-K-\Lambda+x) /(y-x)^{V-1},-(K-x) /(y-x)^{B-V}$.

Derived design for $t-(V, K, \Lambda)$ design $\mathcal{D}=(X, \mathcal{B})$ at $x \in X$ is design \mathcal{D}_{x} with the point-set $X_{x}=X-\{x\}$ and block-set $\mathcal{B}_{x}=\{B-\{x\} \mid x \in B \in \mathcal{B}\}$. Designe \mathcal{E} is called an extension of \mathcal{D}, if derived design of \mathcal{E} at each point is isomorphic to \mathcal{D}. Residual design of \mathcal{D} at a block B is the design \mathcal{D}^{B} with the point-set $X^{B}=X-B$ and block-set $\left.\mathcal{B}^{B}=\{C \in \mathcal{B}\}| | B \cap C \mid=0\right\}$.

It is known that projective plane is extenable if and only if its order is 2 or 4. P. Cameron ([1], theorem 1.35) classified extensions of symmetric 2-designs.

Proposition 2. Let $3-(V, K, \Lambda)$ design $\mathcal{E}=(X, \mathcal{B})$ is an extension of symmetric 2-design. Then one of the following holds:
(1) \mathcal{E} is the Hadamard $3-(4 \Lambda+4,2 \Lambda+2, \Lambda)$ design;
(2) $V=(\Lambda+1)\left(\Lambda^{2}+5 \Lambda+5\right)$ and $K=(\Lambda+1)(\Lambda+2)$;
(3) $V=496, K=40$ and $\Lambda=3$.

In the case (3) we have $R=V-1=495, B=V R / K=496 \cdot 495 / 40=6138$ and the complement to block-graph has parameters $(6138,1197,156,252)$ and spectrum $1197^{1}, 9^{5642},-105^{495}$. Hence maximal order of coclique is at most $v m /(k+m)=6138 \cdot 105 / 1302=495$. In particular, the Hoffman bound is equal to Cvetkovich bound. The complement graph to block-graph of $3-(496,40,3)$ design is called Cameron monster. In [2] it is proved

Proposition 3. For Cameron monster Γ the following hold:
(1) neighborhood of every vertex of Γ is strongly regular graph with parameters $(1197,156,15,21)$ and spectrum $156^{1}, 9^{741},-15^{455}$, and the order of coclique in this graph is at most 105;
(2) the set of blocks C_{x} containing apoint x of designe \mathcal{E} is 495-coclique of Γ, for which the equality holds in Hoffman bound and Cvetkovich bound;
(3) subgraph $\Gamma-C_{x}$ is strongly regular graph with parameters $(5643,1092,141,228)$ and spectrum $1092^{1}, 9^{5148},-96^{494}$;
(4) for distinct points x, y of design \mathcal{E} we have $\left|C_{x} \cap C_{y}\right|=39$, and for coclique $C_{x}-C_{y}$ of graph $\Gamma-C_{y}$ the equality holds in Hoffman bound.

In this paper automorphisms of strongly regular graph with parameters $(1197,156,15,21)$ are founded.

Theorem. Let Γ be a strongly regular graph with parameters $(1197,156,15,21), G=\operatorname{Aut}(\Gamma), g$ an element of prime order p of G and $\Omega=\operatorname{Fix}(g)$. Then $|\Omega| \leq 171, \pi(G) \subseteq\{2,3,5,7,11,13,19\}$ and one of the following holds:
(1) Ω is empty graph, eitrher $p=3$ and $\alpha_{1}(g)=72 l$, or $p=7$ and $\alpha_{1}(g)=168 l-21$, or $p=19$ and $\alpha_{1}(g)=456 l+171$;
(2) Ω is n-clique, end either
(i) $p=13, n=1$ and $\alpha_{1}(g)=312 l+156$, or
(ii) $p=2, n=9$ and $\alpha_{1}(g)=48 l+12$ or $n=11$ and $\alpha_{1}(g)=32 l-12$, or
(iii) $p=5, n=2$ and $\alpha_{1}(g)=120 l+45$ or $n=7$ and $\alpha_{1}(g)=120 l-30$;
(3) Ω is $3 t+1$-coclique, $p=3$ and $\alpha_{1}(g)=72 l+12-45 t$;
(4) Ω contains geodesic 2 -way and $p \leq 13$.

Corollary. Strongly regular graph with parameters $(1197,156,15,21)$ is not vertex-symmetric.
This work was supported by the grant of Russian Science Foundation, project no. 15-11-10025

References

[1] P. Cameron, J. Van Lint, Designs, Graphs, Codes and their Links. London Math. Soc. Student Texts, N 22, Cambridge: Cambr. Univ. Press 1981, 240 p.
[2] A. Makhnev, Extensions of symmetric 2-designs. Maltsev chteniya, Abstracts of Intern. Conf. Novosibirsk 2015, 111.

