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We consider nondirected graphs without loops amd multiple edges. For vertex a of a graph Γ the
subgraph Ωi(a) = {b | d(a, b) = i} is called i-neighboorhod of a in Γ. We set [a] = Γ1(a), a⊥ = {a} ∪ [a].

Degree of an vertex a of Γ is the number of vertices in [a]. Graph Γ is called regular of degree k, if
the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, µ) if Γ
is regular of degree k on v vertices, and |[u]∩ [w]| is equal λ, if u adjacent to w, is equal µ, if d(u,w) = 2.
Amply regular graph of diameter 2 is called strongly regular.

A partial geometry pGα(s, t) is a geometry of points and lines such that every line has exactly s+ 1
points, every point is on t + 1 lines (with s > 0, t > 0) and for any antiflag (P, y) there are exactly
α lines zi containing P and intersecting y. In the case α = 1 we have generalized quadrangle GQ(s, t).
The incidence system (X,B) with a point-set X and block-set B is called t-(V,K,Λ) design, if |X| = V ,
each block contains exactly K points and any t points belong to exactly Λ blocks. Every 2-design is
(V,B,R,K,Λ) design, where B = |B|, each point belong to exactly R blocks, and we have equalities
V R = BK, (V − 1)Λ = R(K − 1). Design is symmetric, if B = V . Design is called quasi-symmetric, if
for every two blocks B,C ∈ B we have |B ∩C| ∈ {x, y}. Numbers x, y are called intersection numbers of
quasi-symmetric design, and it is suggested that x < y.

Block-graph of quasi-symmetric design (X,B) have as a vertex set B and two blocks B,C ∈ B are
adjacent, if |B ∩ C| = y.

Proposition 1 ( [1], theorem 5.3). Block-graph of quasi-symmetric (V,B,R,K,Λ) design is strongly
regular with spectrum ((R−1)K−xB+x)/(y−x)1, (R−K−Λ+x)/(y−x)V−1, −(K−x)/(y−x)B−V .

Derived design for t-(V,K,Λ) designD = (X,B) at x ∈ X is designDx with the point-setXx = X−{x}
and block-set Bx = {B − {x} | x ∈ B ∈ B}. Designe E is called an extension of D, if derived design of E
at each point is isomorphic to D. Residual design of D at a block B is the design DB with the point-set
XB = X −B and block-set BB = {C ∈ B} | |B ∩ C| = 0}.

It is known that projective plane is extenable if and only if its order is 2 or 4. P. Cameron ( [1],
theorem 1.35) classified extensions of symmetric 2-designs.

Proposition 2. Let 3-(V,K,Λ) design E = (X,B) is an extension of symmetric 2-design. Then one
of the following holds:

(1) E is the Hadamard 3-(4Λ + 4, 2Λ + 2,Λ) design;
(2) V = (Λ + 1)(Λ2 + 5Λ + 5) and K = (Λ + 1)(Λ + 2);
(3) V = 496, K = 40 and Λ = 3.

In the case (3) we have R = V − 1 = 495, B = V R/K = 496 · 495/40 = 6138 and the complement
to block-graph has parameters (6138,1197,156,252) and spectrum 11971, 95642,−105495. Hence maximal
order of coclique is at most vm/(k + m) = 6138 · 105/1302 = 495. In particular, the Hoffman bound
is equal to Cvetkovich bound. The complement graph to block-graph of 3-(496,40,3) design is called
Cameron monster. In [2] it is proved

Proposition 3. For Cameron monster Γ the following hold:
(1) neighborhood of every vertex of Γ is strongly regular graph with parameters (1197, 156, 15, 21) and

spectrum 1561, 9741,−15455, and the order of coclique in this graph is at most 105;
(2) the set of blocks Cx containing apoint x of designe E is 495-coclique of Γ, for which the equality

holds in Hoffman bound and Cvetkovich bound;
(3) subgraph Γ − Cx is strongly regular graph with parameters (5643, 1092, 141, 228) and spectrum

10921, 95148,−96494;
(4) for distinct points x, y of design E we have |Cx ∩ Cy| = 39, and for coclique Cx − Cy of graph

Γ− Cy the equality holds in Hoffman bound.
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In this paper automorphisms of strongly regular graph with parameters (1197, 156, 15, 21) are founded.

Theorem. Let Γ be a strongly regular graph with parameters (1197, 156, 15, 21), G = Aut(Γ), g an
element of prime order p of G and Ω = Fix(g). Then |Ω| ≤ 171, π(G) ⊆ {2, 3, 5, 7, 11, 13, 19} and one of
the following holds:

(1) Ω is empty graph, eitrher p = 3 and α1(g) = 72l, or p = 7 and α1(g) = 168l − 21, or p = 19 and
α1(g) = 456l + 171;

(2) Ω is n-clique, end either
(i) p = 13, n = 1 and α1(g) = 312l + 156, or
(ii) p = 2, n = 9 and α1(g) = 48l + 12 or n = 11 and α1(g) = 32l − 12, or
(iii) p = 5, n = 2 and α1(g) = 120l + 45 or n = 7 and α1(g) = 120l − 30;

(3) Ω is 3t+ 1-coclique, p = 3 and α1(g) = 72l + 12− 45t;
(4) Ω contains geodesic 2-way and p ≤ 13.

Corollary. Strongly regular graph with parameters (1197, 156, 15, 21) is not vertex-symmetric.
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