Algorithmic recognition by spectrum

Alexander Buturlakin, Andrey Vasil'ev Sobolev Institute of Mathematics, Novosibirsk, Russia

The set of element orders of a finite group G is called *the spectrum* and denoted by $\omega(G)$, and groups with the same spectrum are said to be *isospectral*. The following question seems to be natural: if \mathcal{M} is a set of positive integers, does a group G with $\omega(G) = \mathcal{M}$ exist, and if so, can one describe all such groups? We are interested in algorithmic aspect of this problem under assumption that G is simple.

Given a finite group G, the set \mathcal{M} is called *almost G-spectral*, if $\mathcal{M} \subseteq \omega(G)$, max $\mathcal{M} = \max \omega(G)$, and $\omega(H) \neq \omega(\mathcal{M})$ for every simple group H whose spectrum differs from the spectrum of G. For a finite set \mathcal{M} , denote by $\Omega(\mathcal{M})$ the set of all simple groups G such that \mathcal{M} is almost G-spectral.

We prove the following statement.

Theorem. Let \mathcal{M} be a finite set of positive integers, $m = |\mathcal{M}|$ and $M = \max \mathcal{M}$. Then, given \mathcal{M} , a group G such that G lies $\Omega(\mathcal{M})$ can be determined in time polynomial in $m \log M$.

We also are going to discuss problems of effective generation of the spectrum of a group of Lie type.

The work is supported by Russian Science Foundation (project 14-21-00065).