On the decomposition of elementary transvection in elementary group

Roxana Dryaeva, Vladimir Koibaev North-Ossetia State University, Vladikavkaz, Russia

We consider the following data: an elementary net $\sigma = (\sigma_{ij})$ (elementary carpet) of the additive subgroups of a commutative ring (the net without the diagonal) of the order n, a derived net $\omega = (\omega_{ij})$, which depends of the net σ , the net $\Omega = (\Omega_{ij})$, which associated with the elementary group $E(\sigma)$, where $\omega \subseteq \sigma \subseteq \Omega$ and the net Ω is the least (complemented) net among the all nets which contain the elementary net σ . We prove that every elementary transvection $t_{ij}(\alpha)$ can be decomposed as a product of two matrixes M_1 and M_2 , where M_1 is the element of the group $\langle t_{ij}(\sigma_{ij}), t_{ji}(\sigma_{ji}) \rangle$, M_2 is the element of the net group $G(\tau)$ and the net τ has the representation $\tau = \begin{pmatrix} \Omega_{11} & \omega_{12} \\ \omega_{21} & \Omega_{22} \end{pmatrix}$.

The work of V. A. Koibaev was supported by the RFBR (project 13-01-00469). The results of the present paper were obtained in the frame of the state assignment of the Russian Ministry of Education.

References

- Koibaev V. A., Closed nets in linear groups, Vestnik St. Petersburg University. Mathematics, 2013, Vol. 46, No. 1, pp.14–21.
- Borevich Z. I., Subgroups of linear groups rich in transvections, Journal of Soviet Mathematics, 1987, 37:2, pp.928–934.