On the decomposition of elementary transvection in elementary group

Roxana Dryaeva, Vladimir Koibaev
North-Ossetia State University, Vladikavkaz, Russia

We consider the following data: an elementary net $\sigma=\left(\sigma_{i j}\right)$ (elementary carpet) of the additive subgroups of a commutative ring (the net without the diagonal) of the order n, a derived net $\omega=\left(\omega_{i j}\right)$, which depends of the net σ, the net $\Omega=\left(\Omega_{i j}\right)$, which associated with the elementary group $E(\sigma)$, where $\omega \subseteq \sigma \subseteq \Omega$ and the net Ω is the least (complemented) net among the all nets which contain the elementary net σ. We prove that every elementary transvection $t_{i j}(\alpha)$ can be decomposed as a product of two matrixes M_{1} and M_{2}, where M_{1} is the element of the group $\left\langle t_{i j}\left(\sigma_{i j}\right), t_{j i}\left(\sigma_{j i}\right)\right\rangle, M_{2}$ is the element of the net group $G(\tau)$ and the net τ has the representation $\tau=\left(\begin{array}{ll}\Omega_{11} & \omega_{12} \\ \omega_{21} & \Omega_{22}\end{array}\right)$.

The work of V. A. Koibaev was supported by the RFBR (project 13-01-00469). The results of the present paper were obtained in the frame of the state assignment of the Russian Ministry of Education.

References

[1] Koibaev V. A., Closed nets in linear groups, Vestnik St. Petersburg University. Mathematics, 2013, Vol. 46, No. 1, pp.14-21.
[2] Borevich Z. I., Subgroups of linear groups rich in transvections, Journal of Soviet Mathematics, 1987, 37:2, pp.928-934.

