Automorphisms of a distance-regular graph with intersection array $\{100,66,1 ; 1,33,100\}$

Konstantin Efimov, Alexander Makhnev
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

A. A. Makhnev and D. V. Paduchikh have found [1] intersection arrays of distance-regular graphs, in which neighborhoods of vertices are strongly-regular graphs with second eigenvalue 3. A. A. Makhnev suggested the program to research of automorphisms of these distance-regular graphs. In this moment cases $\{100,66,1 ; 1,33,100\}$, $\{176,150,1 ; 1,25,176\}$ and $\{256,204,1 ; 1,51,256\}$ are not investigated.

In this paper are researching possible orders and subgraphs of fixed points of automorphisms of a hypothetical distance-regular graph with intersection array $\{100,66,1 ; 1,33,100\}$. Possible automorphisms of a strongly-regular graph with parameters $(100,33,8,12)$ found in [2].

Theorem 1. Let Γ be a distance-regular graph with intersection array $\{100,66,1 ; 1,33,100\}, G=$ $\operatorname{Aut}(\Gamma), g$ be an element of G with prime order p and $\Omega=\operatorname{Fix}(g)$ contains along s vertices in t antipodal classes. Then $\pi(G) \subseteq\{2,3,5,7,11,29,31,101\}$ and one of the following assertions holds:
(1) Ω is an empty graph and either $p=101, \alpha_{1}(g)=101$, or $p=3, \alpha_{1}(g)=60 m+27 l+21$;
(2) $p=31, \Omega$ is a distance-regular graph with intersection array $\{7,4,1 ; 1,2,7\}$;
(3) $p=29, \Omega$ is a distance-regular graph with intersection array $\{13,8,1 ; 1,4,13\}$;
(4) $p=11$ and $t=2,13,24$;
(5) $p=7$ and either Ω is a distance-regular graph with intersection array $\{16,10,1 ; 1,5,16\}$, or $t=$ 24, 31;
(6) $p=5$ and $t=1,16,21,26,31$;
(7) $p=3, s=3$ and $t=2,5, \ldots, 32$;
(8) $p=2, t$ is odd and either $s=3, t=1,3,5, \ldots, 33$, or $s=1$ and $t=1,3,5, \ldots, 11$.

Theorem 2. Let Γ be a distance-regular graph with intersection array $\{100,66,1 ; 1,33,100\}$, in which neighbourhoods of vertices are strongly-regular graphs with parameters $(100,33,8,12), G=\operatorname{Aut}(\Gamma), g$ be an element of G with prime order $p>2$ and $\Omega=\operatorname{Fix}(g)$ is not empty graph, which contains along s vertices in t antipodal classes. Then $\pi(G) \subseteq\{2,3,11,101\}$ and one of the following assertions holds:
(1) $p=11, s=3$ and $t=2$;
(2) $p=3, s=3$ and either $t=5, \Omega$ is an union of isolated 5 -cliques, or $t=5,8, \ldots, 17$ and neighbourhoods of vertices in Ω are cocliques, or $t=11,14, \ldots, 26$ and neighbourhood of any vertex in Ω contains geodesic 2-path;
(3) $p=2$, either Ω contained in antipodal class, or $t=5$ and Ω is is an union of isolated 5 -cliques and $s=1,3$, or neighbourhoods of vertices in Ω are unions of isolated cliques and $s=3, t=3,5$, or neighbourhood of any vertex in Ω contains geodesic 2-path and $s=3, t=7,9, \ldots, 33$.

Corollary. A distance-regular graph with intersection array $\{100,66,1 ; 1,33,100\}$ is not vertex-transitive.

References

[1] A. A. Makhnev and D. V. Paduchikh, An exceptional strongly-regular graphs with eigenvalue 3 and their expansions. Trudy of IMM UB RAS 19 (2013) 167-174.
[2] M. S. Nirova, Edge-symmetric strongly-regular graphs with number of vertices is not greater 100, Sibirean electr. Math. Reports 10 (2013) 22-30.

