Automorphisms of graph with intersection array {169, 126, 1; 1, 42, 169}

Alena Kagazegheva

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

We consider nondirected graphs without loops and multiple edges. For vertex a of a graph Γ the subgraph $\Omega_i(a) = \{b \mid d(a, b) = i\}$ is called *i*-neighboorhood of a in Γ . We set $[a] = \Gamma_1(a), a^{\perp} = \{a\} \cup [a]$.

Degree of an vertex a of Γ is the number of vertices in [a]. Graph Γ is called regular of degree k, if the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, μ) if Γ is regular of degree k on v vertices, and $|[u] \cap [w]|$ is equal λ , if u adjacent to w, is equal μ , if d(u, w) = 2. Amply regular graph of diameter 2 is called strongly regular.

Jack Koolen suggested the problem investigation of distance-regular graphs whose local subgraphs are strongly regular graphs with the second eigenvalue at most t for some natural number t. For t = 3 A. Kagazezheva and A. Makhnev [1] proved the next result

Proposition. Let Γ be a distance-regular graph with strongly regular local subgraphs having eigenvalue 3 and parameters $(v', k', 5, \mu')$. Then local subgraphs either isomorphic triangular graph T(7) and Γ is a half graph of 7-cube, or have parameters (169, 42, 5, 12) and Γ has intersection array {169, 126, 1; 1, 42, 169}.

In this paper it is founded automorphisms of distance-regular graph with intersection array $\{169, 126, 1; 1, 42, 169\}$.

Theorem. Let Γ be a distance-regular graph with intersection array {169, 126, 1; 1, 42, 169}, and local subgraphs of Γ are strongly regular with parameters (169, 42, 5, 12), $G = \operatorname{Aut}(\Gamma)$, g - an element of G prime order p > 2 and $\Omega = \operatorname{Fix}(g)$ is nonempty graph containing s vertices in t antipodal classes. Then $\pi(G) \subseteq \{2, 3, 5, 7, 13, 17\}$ and one of the following holds:

(1) some $\langle g \rangle$ -orbit on $\Gamma - \Omega$ contains geodesic 2-way, either p = 7 and t = 2, or p = 5 and Ω is a distance-regular graph with intersection array $\{9, 6, 1; 1, 2, 9\}$;

(2) some $\langle g \rangle$ -orbit on $\Gamma - \Omega$ is clique, p = 3 and either s = 4, t = 2, 5 and Ω is the union of 4 isolated t-cliques, or s = 1 and Ω is 2-clique;

(3) every $\langle g \rangle$ -orbit on $\Gamma - \Omega$ is coclique, either p = 13, Ω is an antipodal class, or p = 5 and t = 40, or p = 3, s = 4 and t = 14.

Corollary. Let Γ be a distance-regular graph with intersection array {169, 126, 1; 1, 42, 169}, and local subgraphs of Γ are strongly regular with parameters (169, 42, 5, 12). If $G = \operatorname{Aut}(\Gamma)$ is nonsolvable group acting transitively on the vertex set of Γ , then S = S(G) is an elementary abelian 2-group, $\overline{G} = G/S$ is isomorphic to $Sp_4(4)$, for any vertex $a \in \Gamma$ we have $G_a = 2^6 : (Z_3 \times A_5)$, S contains normal in G subgroup K of order 4, regular on each antipodal class, $|S : S_{\{F\}}| = 2$ fot antipodal class F, S/K is irreducible $F_2Sp_4(4)$ -module of order $2^8, 2^{16}, 2^{32}$ and $C_S(f) = K$ for every element f of order 17 inG.

This work was supported by the grant of Russian Science Foundation, project no. 14-11-00061.

References

A. Kagazegheva, A. Makhnev, On graphs with strongly regular local subgraphs having parameters (111,30,5,9) or (169,42,5,12), Doklagy Akademii Nauk 2014, V. 456, N 2. 135-139.