Automorphisms of local subgraphs of pseudogeometric graph for $p G_{3}(7,75)$

Madina Khamgokova, Alexander Makhnev
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

We consider nondirected graphs without loops amd multiple edges. For vertex a of a graph Γ the subgraph $\Omega_{i}(a)=\{b \mid d(a, b)=i\}$ is called i-neighboorhod of a in Γ. We set $[a]=\Gamma_{1}(a), a^{\perp}=\{a\} \cup[a]$. For a vertex subset S of a graph Γ we denote as $\Gamma(S)$ the set $\cap_{a \in S}([a]-S)$.

Degree of an vertex a of Γ is the number of vertices in $[a]$. Graph Γ is called regular of degree k, if the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, μ) if Γ is regular of degree k on v vertices, and $|[u] \cap[w]|$ is equal λ, if u adjacent to w, is equal μ, if $d(u, w)=2$. Amply regular graph of diameter 2 is called strongly regular.

By $K_{m \times n}$ we denote the complete bipartite graph with m parties of order n. Graph on the set $X \times Y$ is called $p \times q$-grid, if $|X|=p,|Y|=q$, and pairs $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if and only if $x_{1}=x_{2}$ or $y_{1}=y_{2}$. By $m K_{n}$ we denote the union of m isolated n-cliques.

A partial geometry $p G_{\alpha}(s, t)$ is a geometry of points and lines such that every line has exactly $s+1$ points, every point is on $t+1$ lines (with $s>0, t>0$) and for any antiflag (P, y) there are exactly α lines z_{i} containing P and intersecting y. In the case $\alpha=1$ we have generalized quadrangle $G Q(s, t)$.

Point-graph of a geometry (P, L) of points and lines has P as a vertex set, and two vertices a, b are adjacent if a, b belong to some line. Point-graph of partial geometry $p G_{\alpha}(s, t)$ is strongly regular with parameters $v=(s+1)(1+s t / \alpha), k=s(t+1), \lambda=(s-1)+(\alpha-1) t, \mu=\alpha(t+1)$. Strongly regular graph with this parameters for some natural numbers α, s, t is called pseudogeometric graph for $p G_{\alpha}(s, t)$.

A graph Γ is called t-izoregular, if for every $i \leq t$ and for every i-vertex subset S the number $|\Gamma(S)|$ is depend only from isomorphic type of the subgraph induced by S. A graph on v vertices is called absolute izoregular, if it is $(v-1)$-izoregular. Finally t-izoregular graph Γ is called exactly t-izoregular, if it is not $(t+1)$-izoregular. Cameron [1] proved that every 5 -izoregular graph Γ is absolute izoregular and is isomorphic pentagon, 3×3-grid, complete multipartite graph $K_{n \times m}$ or its complement. Further every exactly 4-izoregular graph is pseudogeometric for $p G_{r}\left(2 r, 2 r^{3}+3 r^{2}-1\right)$ or its complement. Let $I z o(r)$ be a pseudogeometric graph for $p G_{r}\left(2 r, 2 r^{3}+3 r^{2}-1\right)$. For $r=1$ we have the point graph of $G Q(2,4)$, and for $r=2$ we have MacLaughlin graph.

For every vertex a of a graph $I z o(r)$ the subgraph $\Gamma(a)$ is pseudogeometric for $p G_{r-1}\left(2 r-1, r^{3}+r^{2}-\right.$ $r-1)$. Makhnev [2] proved that pseudogeometric graph for $p G_{r-1}\left(2 r-1, r^{3}+r^{2}-r-1\right)$ does not exist for $r=3$. Automorphisms of 2-neighboorhod Σ of some vertex of $\operatorname{Izo}(3)$ and local subgraphs of Σ were determined by M. Nirova, M. Isakova and A. Tokbaeva [3], [4], [5].

Graph $I z o(4)$ has parameters $(3159,1408,532,704)$ and for any vertex a subgraph $\Sigma=[a]$ is pseudogeometric for $p G_{3}(7,75)$ and has parameters $(1408,532,156,228)$. Further, for any vertex $b \in \Sigma$ subgraph $\Delta=\Sigma(b)$ is pseudogeometric for $p G_{2}(6,25)$ and has parameters $(532,156,30,52)$, subgraph $\Delta^{\prime}=\Sigma_{2}(b)$ is strongly regular with parameters $(875,304,78,120)$. In this paper automorphisms of strongly regular with parameters $(532,156,30,52)$ are determined.

Theorem. Let Γ be a strongly regular with parameters (532,156,30,52), $G=\operatorname{Aut}(\Gamma), g$ is an element of prime order p of G and $\Omega=\operatorname{Fix}(g)$. Then $\pi(G) \subseteq\{2,3,5,7,11,13,17,19,23,29\}$ and one of the following holds:
(1) Ω is empty graph, either $p=19$ and $\alpha_{1}(g)=152$, or $p=7$ and $\alpha_{1}(g)=210 l-28$, or $p=2$ and $\alpha_{1}(g)=30 l+16$;
(2) Ω is n-cliqwue, either $p=3, n=1$ and $\alpha_{1}(g)=90 l+36$, or $p=5, n=2$ and $\alpha_{1}(g)=150 l-20$ or $n=7$ and $\alpha_{1}(g)=150 l-30$;
(3) Ω is l-coclique, either $p=2$ and $\alpha_{1}(g)=4 m+152-60 l$, or $p=13$ and $\alpha_{1}(g)=13(4 s-30 t-14)$, where $m=13 s-1$;
(4) Ω contains geodesic 2 -way and $p \leq 29$.

This work was supported by the grant of Russian Science Foundation, project no. 15-11-10025.

References

[1] P. Cameron, J. Van Lint, Designs, Graphs, Codes and their Links, London Math. Soc. Student Texts, 1981. V. 22, Cambr. Univ. Press. 240 p.
[2] A. Makhnev, On nonexistence of strongly regular graphs with parameters $(486,165,36,66)$, Ukr. Math. J. 2002. V. 54, N 7. 941-949.
[3] A. Makhnev, M. Nirova, On automorphisms of strongly regular graphs with parameters $(640,243,66,108)$, Doklagy Akademii Nauk 2011. V. 440, N 6. 743-746.
[4] M. Isakova, A. Makhnev, On automorphisms of strongly regular graphs with parameters $(396,135,30,54)$, Vladik. Math. J. 2010. V. 12, N 3. 32-42.
[5] A. Makhnev, A. Tokbaeva, On automorphisms of strongly regular graphs with parameters $(243,66,9,21)$, Vladik. Math. J. 2010. V. 12, N 4. 35-45.

