Spectral properties of the Star graph

Ekaterina Khomyakova and Elena Konstantinova
Novosibirsk State University, Novosibirsk, Russia
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
ekhomnsu@gmail.com, e_konsta@math.nsc.ru

Spectral properties of Cayley graphs on the symmetric group $S y m_{n}$ generated by transpositions have studied intensively last years. In 2000 it was shown by J. Friedman [1] that the Cayley graph on Sym $_{n}$ with respect to a set of $n-1$ transpositions has the smallest non-zero eigenvalue $\lambda_{2} \leqslant 1$, with equality iff for some i we have $T=\{(i, j) \mid j \neq i\}$. The multiplicity of this eigenvalue is

$$
\begin{equation*}
\operatorname{mul}\left(\lambda_{2}\right) \geqslant n-1 . \tag{1}
\end{equation*}
$$

For example, if $T=\{(1,2),(2,3), \ldots,(n-1, n)\}$ then we have the Bubble-sort graph whose spectral properties were investigated by R. Bacher in [2].

In this paper we study spectral properties of the Star graph S_{n} that is the Cayley graph on $S_{y} m_{n}$ with the generating set $T=\{(1,2),(1,3), \ldots,(1, n)\}$. In 2009 A. Abdollahi and E. Vatandoost conjectured [3] that the spectrum of S_{n} is integral, moreover it contains all integers in the range from $-(n-1)$ up to $n-1$ (with the sole exception that when $n \leqslant 3$, zero is not an eigenvalue of S_{n}). This conjecture was proved by R. Krakovski and B. Mohar [4] in 2012.

We investigate multiplicity of eigenvalues of the Star graph S_{n}. Using the standard representation theory [5] their exact values were found for $4 \leqslant n \leqslant 13$. The obtained data show an oscillating distribution of eigenvalue multiplicities. One can assume that this behavior of multiplicities will be also kept for large n. Let us note that typically the distribution of eigenvalue multiplicities for known distance-regular graphs is unimodal. However, the Star graph is not distance-regular. It is also shown that the low bound (1) for $\operatorname{mul}\left(\lambda_{2}\right)$ is achieved only for $2 \leqslant n \leqslant 5$ in S_{n}. The following result is given.

Theorem. The values $\pm(n-2)$ are eigenvalues of S_{n} with multiplicity $(n-2)(n-1)$.
Most of the talk is based on results from [6]. The work has been supported by RFBS Grant 15-01-05867 and Grant NSh-1939.2014.1 of President of Russia for Leading Scientific Schools.

References

[1] J. Friedman, On Cayley graphs on the symmetric group generated by transpositions // Combinatorica. 2000. Vol. 20, no. 4. P. 505-519.
[2] R. Bacher, Valeur propre minimale du laplacien de Coxeter pour le groupe symetrique // J. Algebra 1994. Vol. 167. P. 460-472.
[3] A. Abdollahi, E. Vatandoost, Which Cayley graphs are integral? // The Electron. J. Comb. 2009. Vol. 16, no. 1. P. 6-7.
[4] R. Krakovski, B. Mohar, Spectrum of Cayley graphs on the symmetric group generated by transposition // Lin. Algebra Appl. 2012. Vol. 437. P. 1033-1039.
[5] G. Chapuy, V. Feray, A note on a Cayley graph of Sym $m_{n} / /$ arXiv:1202.4976v2.
[6] E.N. Khomyakova, E.V. Konstantinova, Note on exact values of multiplicities of eigenvalues of the Star graph // Sib. Electron. Math. Reports. 2015. Vol. 12. P. 92-100.

