On finite 5-primary groups G with disconnected Gruenberg — Kegel graph

Valeriya Kolpakova

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS

Let G be a finite group. Denote by $\pi(G)$ the set of all prime divisors of the order of G. Prime graph (or Gruenberg – Kegel graph) $\Gamma(G)$ of G is defined as the graph with vertex set $\pi(G)$, in which two distinct vertices p and q are adjacent if and only if G contains an element of order pq. A group G is called *n*-primary if $|\pi(G)| = n$. We denote the number of connected components of $\Gamma(G)$ by s(G), and the set of its connected components by $\{\pi_i(G) \mid 1 \leq i \leq s(G)\}$; for the group G of even order believe that $2 \in \pi_1(G)$.

Kondrat'ev determined finite almost simple 5-primary groups and their Gruenberg — Kegel graphs [1]. The author together with A.S. Kondrat'ev [2] obtained a description of chief factors of the commutator subgroups of finite non-solvable 5-primary groups G with disconnected Gruenberg-Kegel graph in the case when G/F(G) is almost simple n-primary group for $n \leq 4$. Our aim is to describe 5-primary groups G with disconnected prime graph in the remaining cases. It is natural to begin the study by imposing certain restrictions on the component $\pi_1(G)$. The result of this work is describing 5-primary groups G with disconnected prime graph such that either $\pi_1(G) = \{2\}$, or $3 \notin \pi_1(G) \neq \{2\}$ and $3 \in \pi(G)$.

We prove the following two theorems. Each of the items of these theorems is realizing.

Theorem 1. Let G be a finite 5-primary group and $\pi_1(G) = \{2\}$. Then one of the following conditions holds:

(1) $G \cong O(G) \times S$ is Frobenius group, where O(G) is 4-primary abelian group and S is cyclic 2-group or generalized quaternion group;

(2) G is Frobenius group with kernel $O_2(G)$ and 4-primary complement;

(3) $G \cong A \setminus (B \setminus C)$ is 2-frobenius group, where $A = O_2(G)$, B is cyclic 4-primary 2'-group and C is cyclic 2-group;

(4) $G \cong L_2(r), r \ge 65537$ is Mersenne or Ferma prime and $|\pi(r^2 - 1)| = 4$;

(5) $\overline{G} = G/O_2(G) \cong L_2(2^m)$, where either $m \in \{6, 8, 9\}$, or $m \ge 11$ is prime. If $O_2(G) \ne 1$, then $O_2(G)$ is a direct product of minimal normal subgroups of order 2^{2m} from G, each of these as \overline{G} -module is isomorphic to the natural $GF(2^m)SL_2(2^m)$ -module;

(6) $\overline{G} = G/O_2(G) \cong Sz(q)$, where $q = 2^p$, $p \ge 7$ and q-1 primes, $|\pi(q - \varepsilon\sqrt{2q} + 1)| = 2$ and $|\pi(q + \varepsilon\sqrt{2q} + 1)| = 1$ for $\varepsilon \in \{+, -\}$, $5 \in \pi(q - \varepsilon\sqrt{2q} + 1)$. If $O_2(G) \ne 1$, then $O_2(G)$ is a direct product of minimal normal subgroups of order q^4 from G, each of these as \overline{G} -module is isomorphic to the natural GF(q)Sz(q)-module of dimension 4.

Theorem 2. Let G be a finite 5-primary group with disconnected prime graph, $\overline{G} = G/F(G)$ is almost simple 5-primary group, $3 \in \pi(G)$ and $3 \notin \pi_1(G) \neq \{2\}$. Then one of the following conditions holds:

(1) G is isomorphic to $L_2(5^3)$ or $L_2(17^3)$;

(2) $G \cong L_2(p)$, where either $p \ge 65537$ is Mersenne or Ferma prime and $|\pi(p^2 - 1)| = 4$, or $p \ge 41$ is prime, $|\pi(p^2 - 1)| = 4$ and $3 \in \pi(\frac{p+1}{2})$; (3) G is isomorphic to $L_2(3^r)$ or $PGL_2(3^r)$, where r is odd prime, $|\pi(3^{2r} - 1)| = 4$ and $r \notin \pi(G)$;

(4) $G \cong L_2(p^r)$, where $p \in \{5, 17\}$, r is odd prime, $|\pi(p^{2r}-1)| = 4, 3 \in \pi(\frac{p^r+1}{2})$ and $r \notin \pi(G)$.

The work was supported by the Russian Scientific Fund (project No. 14-11-00061).

References

- [1] Kondrat'ev A.S., Finite almost simple 5-primary groups u their Gruenberg-Kegel graphs. Sib. El. Math. Rep. 11 (2014) 634-674.
- [2] Kolpakova V. A., Kondrat'ev A. S., On finite non-solvable 5-primary groups with disconnected Gruenberg Kegel graph, such that $|\pi(G/F(G))| \leq 4$. Fund. and app. math., to appear.