On Cameron's question about primitive permutation groups with stabilizer of two points that is normal in the stabilizer of one of them

Anton Konygin

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

Cameron formulated the following question (see [1], [3, question 9.69]). Assume that G is a primitive permutation groups on a finite set $X, x \in X$ and G_x acts regularly on the G_x -orbits $G_x(y)$ containing y (i.e. G_x induces on $G_x(y)$ a regular permutation group). Is it true that this action is faithful, i.e., that $|G_x| = |G_x(y)|$? Note that the question on the faithfulness of the action of a stabilizer G_x on a regular suborbit $G_x(y)$ was also treated earlier (see [5], [6], [7]).

It is clear that the regularity of the action of the group G_x on $G_x(y)$ is equivalent to the property $G_{x,y} \leq G_x$, and the equality $|G_x| = |G_x(y)|$ is equivalent to the equality $G_{x,y} = 1$. Thus, Cameron's question is equivalent to the question on the fulfilment for an arbitrary primitive permutation group G on a finite set X of the following property.

(**Pr**) If $x \in X$ and $y \in X \setminus \{x\}$, then $G_{x,y} \leq G_x$ implies $G_{x,y} = 1$.

Obviously, Cameron's question is also equivalent to the question on the fulfilment for an arbitrary finite group G of the following property.

(**Pr***) If M_1 and M_2 are different conjugate maximal subgroups in G, then $M_1 \cap M_2 \leq M_1$ implies $M_1 \cap M_2 \leq G$.

In the present work (using [2]), we prove the following theorem.

Theorem. Let G be a primitive permutation group on a finite set X and $x \in X$. Assume that the socle of G is not isomorphic to power of an exceptional group T of Lie type $E_8(q)$ with T_x of type (d) or (e) from [4]. Then the permutation group G satisfies property (**Pr**). In particular, for such primitive groups G, the answer to Cameron's question is positive.

References

- Cameron P.J., Suborbits in transitive permutation groups. Combinatorics: Proc. NATO Advanced Study Inst. (Breukelen, 1974). Part 3: Combinatorial Group Theory. Amsterdam: Math. Centrum 57 (1974) 98-129.
- [2] Konygin A. V., On Cameron's question about triviality of stabilizer of two points that is normal in the stabilizer of one of them, for primitive permutation groups. *Trudy Inst. Mat. i Mekh. UrO RAN* 21, No 3 (2015).
- [3] Kourovskaya Tetrad' (Kourovka Notebook). 17-th ed., Novosibirsk: Inst. Mat. SO RAN (2010) 219 p.
- [4] Liebeck M.W., Seitz G.M., Maximal subgroups of exceptional groups of Lie type, finite and algebraic. Geom. Dedicata 35, No 1–3 (1990) 353-387.
- [5] Reitz H.L., On primitive groups of odd order. Amer. J. Math. 26 (1904) 1-30.
- [6] Weiss M.J., On simply transitive groups. Bull. Amer. Math. Soc. 40 (1934) 401-405.
- [7] Wielandt H., Finite permutation groups. New York: Acad. Press (1964) 114 p.