An injective map from the set of maximum independent sets in a Doob graph to the set of 4 -ary distance- 2 MDS codes

Denis Krotov
Sobolev Institute of Mathematics, Novosibirsk, Russia
krotov@math.nsc.ru

The Cartesian product $D(m, n) \stackrel{\text { def }}{=} \mathrm{Sh}^{m} \times K_{4}^{n}$ of m copies of the Shrikhande graph Sh (see the left part of Fig. 1) and n copies of the complete graph K_{q} of order $q=4$ is called a Doob graph if $m>0$, while $D(0, n)$ is the Hamming graph $H(n, 4)$ (in general $H(n, q) \stackrel{\text { def }}{=} K_{q}^{n}$). The Doob graph $D(m, n)$ is a distance-regular graph with the same parameters as $H(2 m+n, 4)$. It is easy to see that the independence number of this graph is $4^{2 m+n-1}$. The maximum independent sets in the Hamming graphs are known as the distance-2 MDS codes, or the Latin hypercubes (in the last case, one coordinate is usually considered as a function of the other coordinates). It is natural to generalize these notions to the maximum independent sets in Doob graphs; however, for generalized Latin hypercubes in $D(m, n)$, we need at least one K_{4} coordinate, i.e., $n>0$. There are 4 trivial MDS codes in $D(0,1) ; 24$ equivalent distance-2 MDS codes in $D(0,2)$ (16 of them can be found in Fig. 1); 16 distance-2 MDS codes in $D(1,0)$ (see Fig. 1), which form two equivalence classes.

The goal of the current correspondence is to describe a rather simple recursive way to map injectively the set $\mathrm{MDS}_{m, n}$ of distance- 2 MDS codes in $D(m, n)$ into $\mathrm{MDS}_{0,2 m+n}$. At first, we define the map κ from $\mathrm{MDS}_{1,0}$ into $\mathrm{MDS}_{0,2}$, see Fig. 1. This map has the following important property: two MDS codes M^{\prime} and $M^{\prime \prime}$ in $D(1,0)$ intersect if and only if their images κM^{\prime} and $\kappa M^{\prime \prime}$ intersect. It follows that κ :

$$
\kappa M \stackrel{\text { def }}{=}\left\{\left(x_{1}, \ldots, x_{m}, z_{1}, z_{2}, y_{1}, \ldots, y_{n}\right) \in D(m, n+2) \mid\left(z_{1}, z_{2}\right) \in \kappa\left\{v \in \operatorname{Sh} \mid\left(x_{1}, \ldots, x_{m}, v, y_{1}, \ldots, y_{n}\right) \in M\right\}\right\}
$$

maps $\mathrm{MDS}_{m+1, n}$ into $\mathrm{MDS}_{m, n+2}$. Then, κ^{m} maps $\mathrm{MDS}_{m, n}$ into $\mathrm{MDS}_{0,2 m+n}$. A constructive characterization of the class $\operatorname{MDS}_{0,2 m+n}$ can be found in [1]; using the map κ^{m}, it is possible to extract some information on $\operatorname{MDS}_{m, n}$ for arbitrary m. In particular, $\left|\operatorname{MDS}_{m, n}\right|=2^{2^{2 m+n}(1+o(1))}$ (by comparison, the number of all vertex subsets in $D(m, n)$ is $\left.2^{2^{4 m+2 n}}\right)$.

Figure 1: The 16 maximum independent sets in Sh and the corresponding independent sets in K_{4}^{2}

This research was funded by the Russian Science Foundation (grant No 14-11-00555).

References

[1] D. S. Krotov, V. N. Potapov, n-Ary quasigroups of order 4 // SIAM J. Discrete Math. 2009. Vol. 23, no. 2. P. 561-570.

