An injective map from the set of maximum independent sets in a Doob graph to the set of 4-ary distance-2 MDS codes

Denis Krotov Sobolev Institute of Mathematics, Novosibirsk, Russia krotov@math.nsc.ru

The Cartesian product $D(m,n) \stackrel{\text{def}}{=} \operatorname{Sh}^m \times K_4^n$ of m copies of the Shrikhande graph Sh (see the left part of Fig. 1) and n copies of the complete graph K_q of order q = 4 is called a Doob graph if m > 0, while D(0,n) is the Hamming graph H(n,4) (in general $H(n,q) \stackrel{\text{def}}{=} K_q^n$). The Doob graph D(m,n) is a distance-regular graph with the same parameters as H(2m+n,4). It is easy to see that the independence number of this graph is 4^{2m+n-1} . The maximum independent sets in the Hamming graphs are known as the distance-2 MDS codes, or the Latin hypercubes (in the last case, one coordinate is usually considered as a function of the other coordinates). It is natural to generalize these notions to the maximum independent sets in Doob graphs; however, for generalized Latin hypercubes in D(m,n), we need at least one K_4 coordinate, i.e., n > 0. There are 4 trivial MDS codes in D(0,1); 24 equivalent distance-2 MDS codes in D(0,2) (16 of them can be found in Fig. 1); 16 distance-2 MDS codes in D(1,0) (see Fig. 1), which form two equivalence classes.

The goal of the current correspondence is to describe a rather simple recursive way to map injectively the set $MDS_{m,n}$ of distance-2 MDS codes in D(m,n) into $MDS_{0,2m+n}$. At first, we define the map κ from $MDS_{1,0}$ into $MDS_{0,2}$, see Fig. 1. This map has the following important property: two MDS codes M' and M'' in D(1,0) intersect if and only if their images $\kappa M'$ and $\kappa M''$ intersect. It follows that κ :

$$\kappa M \stackrel{\text{\tiny def}}{=} \left\{ (x_1, ..., x_m, z_1, z_2, y_1, ..., y_n) \in D(m, n+2) \, \big| \, (z_1, z_2) \in \kappa \{ v \in \text{Sh} \mid (x_1, ..., x_m, v, y_1, ..., y_n) \in M \} \right\}$$

maps $MDS_{m+1,n}$ into $MDS_{m,n+2}$. Then, κ^m maps $MDS_{m,n}$ into $MDS_{0,2m+n}$. A constructive characterization of the class $MDS_{0,2m+n}$ can be found in [1]; using the map κ^m , it is possible to extract some information on $MDS_{m,n}$ for arbitrary m. In particular, $|MDS_{m,n}| = 2^{2^{2m+n}(1+o(1))}$ (by comparison, the number of all vertex subsets in D(m,n) is $2^{2^{4m+2n}}$).

Figure 1: The 16 maximum independent sets in Sh and the corresponding independent sets in K_4^2

This research was funded by the Russian Science Foundation (grant No 14-11-00555).

References

 D. S. Krotov, V. N. Potapov, n-Ary quasigroups of order 4 // SIAM J. Discrete Math. 2009. Vol. 23, no. 2. P. 561–570.