Automorphisms of distance-regular graph with intersection array $\{204, 175, 48, 1; 1, 12, 175, 204\}$

Alexander Makhnev, Marina Nirova, Dmitrii Paduchikh N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

We consider nondirected graphs without loops and multiple edges. For vertex a of a graph Γ the subgraph $\Omega_i(a) = \{b \mid d(a,b) = i\}$ is called *i*-neighboorhood of a in Γ . We set $[a] = \Gamma_1(a)$.

Degree of an vertex a of Γ is the number of vertices in [a]. Graph Γ is called regular of degree k, if the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, μ) if Γ is regular of degree k on v vertices, and $|[u] \cap [w]|$ is equal λ , if u adjacent to w, is equal μ , if d(u, w) = 2. Amply regular graph of diameter 2 is called strongly regular.

Distance-regular graph Γ with intersection array {204, 175, 48, 1; 1, 12, 175, 204} is AT4(4, 6, 5)-graph [1]. Antipodal quotient $\overline{\Gamma}$ has parameters (800, 204, 28, 60).

In this paper automorphisms of distance-regular graph Γ with intersection array {204, 175, 48, 1; 1, 12, 175, 204} and of antipodal quotient $\overline{\Gamma}$ are investigated.

Theorem 1. Let Γ be a strongly regular with parameters (800, 204, 28, 60), $G = \operatorname{Aut}(\Gamma)$, g be an element of prime order p of G and $\Omega = \operatorname{Fix}(g)$. Then $\pi(G) \subseteq \{2, 3, 5, 7, 17\}$ and one of the following holds:

(1) Ω is empty graph, either p = 5, $\alpha_1(g) = 200l$, or p = 2 and $\alpha_1(g) = 40m$;

(2) Ω is n-cliqwide, either p = 17, n = 1 and $\alpha_1(g) = 204$, or p = 5, n = 5 and $\alpha_1(g) = 200s + 20$ or p = 7, n = 2 and $\alpha_1(g) = 280t + 168$;

(3) Ω is *l*-coclique, either p = 3, l = 3m + 2 and $\alpha_1(g) = 120t + 12m + 48$, or p = 2, $\alpha_1(g) = 80t + 4l$, where l = 8, 10, ..., 92;

(4) Ω is the union of m isolated 5-cliques, $2 \le m \le 5$, $\alpha_1(g) = 200s + 20m$;

(5) Ω contains geodesic 2-way and either

(i) p = 3, Ω is the union of 3m + 1 isolated subgraphs $K_{4\times 2}$ and $\alpha_1(g) = 96m + 120t + 72$, or

(ii) p = 2, $|\Omega| = 2l \le 240$, $\lambda_{\Omega} = 0, 2, ..., 26$, degrees of vertices in Ω equal 0, 2, ..., 34 and $\alpha_1(g) = 80t + 8l$.

Theorem 2. Let Γ be a distance-regular graph Γ with intersection array $\{204, 175, 48, 1; 1, 12, 175, 204\}$, $G = \operatorname{Aut}(\Gamma)$, g be an element of prime order p of G and $\Omega = \operatorname{Fix}(g)$ contains s vertices in t antipodal classes. Then $\pi(G) \subseteq \{2, 5, 7, 17\}$ and one of the following holds:

(1) Ω is empty graph, either p = 5, $\alpha_1(g) = 200(4+m-l)$, $\alpha_2(g) = 1000l$ and $\alpha_3(g) = 200(16-m-4l)$, or p = 2, $\alpha_1(g) = 80(4+m-l)$, $\alpha_2(g) = 400l$ and $\alpha_3(g) = 80(46-m-4l)$;

(2) g induces trivial automorphism of antipodal quotient $\overline{\Gamma}$, p = 5 and $\alpha_4(g) = v$;

(3) Ω is the antipodal class of Γ, p = 17, α₁(g) = 340 + 680n, α₂(g) = 2975 and α₃(g) = 680(1 - n);
(4) Ω is the union of two antipodal classes, p = 7, α₁(g) = 910 + 280n - 70l, α₂(g) = 350l, α₃(g) = 3080 - 280l - 280n, l = 1, 5, 9;

(5) $p = 5, t = 5, s = 5, \alpha_1(g) = 700 + 200(m-l), \alpha_2(g) = 1000l - 125 \text{ and } \alpha_3(g) = 200(17 - m - 4l).$

Corollary. Let Γ be a distance-regular graph Γ with intersection array $\{204, 175, 48, 1; 1, 12, 175, 204\}$. Then group $G = \operatorname{Aut}(\Gamma)$ is solvable.

This work was supported by the grant of Russian Science Foundation, project no. 15-11-10025.

References

[1] A. Makhnev, D. Paduchikh, On strongly regular graph with eigenvalue μ and its extensions, Proceedings of the Steklov Institute of Mathematics, June 2014, Volume 285, Issue 1 Supplement, S128-S135.