# Strongly regular graphs with strongly regular local subgraphs having second eigenvalue 5 

Alexander Makhnev, Dmitrii Paduchikh<br>N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

We consider nondirected graphs without loops amd multiple edges. For vertex $a$ of a graph $\Gamma$ the subgraph $\Omega_{i}(a)=\{b \mid d(a, b)=i\}$ is called $i$-neighboorhod of $a$ in $\Gamma$. We set $[a]=\Gamma_{1}(a), a^{\perp}=\{a\} \cup[a]$.

Degree of an vertex $a$ of $\Gamma$ is the number of vertices in $[a]$. Graph $\Gamma$ is called regular of degree $k$, if the degree of any vertex is equal $k$. The graph $\Gamma$ is called amply regular with parameters $(v, k, \lambda, \mu)$ if $\Gamma$ is regular of degree $k$ on $v$ vertices, and $|[u] \cap[w]|$ is equal $\lambda$, if $u$ adjacent to $w$, is equal $\mu$, if $d(u, w)=2$. Amply regular graph of diameter 2 is called strongly regular.

A partial geometry $p G_{\alpha}(s, t)$ is a geometry of points and lines such that every line has exactly $s+1$ points, every point is on $t+1$ lines (with $s>0, t>0$ ) and for any antiflag ( $P, y$ ) there are exactly $\alpha$ lines $z_{i}$ containing $P$ and intersecting $y$. In the case $\alpha=1$ we have generalized quadrangle $G Q(s, t)$.

Jack Koolen suggested the problem investigation of distance-regular graphs whose local subgraphs are strongly regular graphs with the second eigenvalue at most $t$ for some natural number $t$. Recently this problem was solved for $t=3$. At present near finishing the case $t=4$. We begin the investigation of the case $t=5$. In [1] was obtained the reduction to the exceptional local subgraphs. Let Gamma be a distance regular graph of diameter $d \geq 3$. Then $c_{2} \leq b_{1}$. A. Makhnev and D. Paduchikh found parameters of exceptional strongly regular graphs with the second eigenvalue 5 , which may be local subgraphs in amply regular graphs with $\mu \leq b_{1}$.

In this paper it is determined parameters of strongly regular graphs with strongly regular local subgraphs havung the second eigenvalue 5 .

Theorem. Let $\Gamma$ be a strongly regular graph with strongly regular local subgraphs havung the second eigenvalue 5. Then $\Gamma$ has parameters $(176,49,12,14),(209,100,45,50),(259,42,5,7),(356,85,30,17)$, $(806,625,480,500),(1464,1225,1020,1050)$ or local subgraphs are exceptional and $\Gamma$ has parameters
(1) $(100,36,14,12),(100,77,60,56),(189,100,55,50),(169,112,75,72),(330,105,40,30),(345,120,35$, $45),(400,210,110,110),(512,133,24,38),(550,225,80,100),(560,325,180,200),(605,280,117,140),(680$, $175,30,50),(846,260,70,84),(946,273,80,78),(990,345,120,120)$,
(2) $(1003,300,65,100),(1016,259,42,74),(1036,375,110,150),(1080,260,70,60),(1090,441,152,196)$, $(1122,209,16,44),(1199,550,225,275),(1200,605,280,330),(1458,329,40,84),(1520,385,60,110),(1577$, $400,105,100)$, $(1976,175,30,14)$;
(3) $(2025,680,175,255),(2032,1275,770,850),(2034,437,100,92),(2209,624,161,182),(2420,885,260$, $360)$, $(2508,1199,550,594)$, (2809, 540, 77, 110), (3250, 1305, 440, 580), (3481, 960, 245, 272), (3844, 630, 68, 110), (3872, 343, 54, 28), (3888, 1625, 580, 750), (3950, 385, 60, 35);
(4) $(4256,259,42,14),(4418,637,96,91),(4496,1015,150,252),(4512,650,55,100),(4706,3625,2760$, $2900),(4941,1520,385,504),(5074,969,176,187),(5625,1520,385,420),(5820,2783,1270,1386),(7139$, $3250,1305,1625)$, $(7280,1015,150,140),(9801,1600,205,272)$.

This work was supported by the grant of Russian Science Foundation, project no. 15-11-10025.

## References

[1] A. Makhnev, Strongly regular graphs with nonprincipal eigenvalue 5 and its extensions. Groups and Graphs, Algorithms and Automata, Abstracts of Intern. Conf. Ekaterinburg 2015, 111.

