Strongly regular graphs with nonprincipal eigenvalue 5 and its extensions

Alexander Makhnev
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

We consider nondirected graphs without loops amd multiple edges. For vertex a of a graph Γ the subgraph $\Omega_{i}(a)=\{b \mid d(a, b)=i\}$ is called i-neighboorhod of a in Γ. We set $[a]=\Gamma_{1}(a), a^{\perp}=\{a\} \cup[a]$.

Degree of an vertex a of Γ is the number of vertices in $[a]$. Graph Γ is called regular of degree k, if the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, μ) if Γ is regular of degree k on v vertices, and $|[u] \cap[w]|$ is equal λ, if u adjacent to w, is equal μ, if $d(u, w)=2$. Amply regular graph of diameter 2 is called strongly regular.

A partial geometry $p G_{\alpha}(s, t)$ is a geometry of points and lines such that every line has exactly $s+1$ points, every point is on $t+1$ lines (with $s>0, t>0$) and for any antiflag (P, y) there are exactly α lines z_{i} containing P and intersecting y. In the case $\alpha=1$ we have generalized quadrangle $G Q(s, t)$.

Jack Koolen suggested the problem investigation of distance-regular graphs whose local subgraphs are strongly regular graphs with the second eigenvalue at most t for some natural number t. In [1] the solving of Koolen problem in the case $t=3$ was began.

We begin the investigation of the case $t=5$.
Strongly regular graph Γ with the second eigenvalue $m-1$ is called exceptional if Γ does not belong the following list:
(1) the union of isilated m-cliques;
(2) pseudogepmetric graph for $p G_{t}(t+m-1, t)$;
(3) the complement of pseudogepmetric graph for $p G_{m}(s, m-1)$;
(4) conference graph with parameters $(4 \mu+1,2 \mu, \mu-1, \mu), \sqrt{4 \mu+1}=m-1$.

In this paper it is obtained reduction to locally exceptional graphs.
Theorem. Let Γ be a distance-regular graph with strongly regular local subgraphs havung the second eigenvalue $t, 4<t \leq 5$, u is a vertex of Γ. Then $[u]$ is an exceptional strongly regular graph, or one of the following holds:
(1) $[u]$ is the union of isilated 6 -cliques;
(2) $[u]$ is the pseudogepmetric graph for $p G_{s-5}(s, s-5)$ and either
(i) Γ is strongly regular graph with parameters $(176,49,12,14),(209,100,45,50),(806,625,480,500)$, $(1464,1225,1020,1050)$, and $s=6,9,24,34$ respectively, or
(ii) $s=6$ and Γ is Johnson graph $J(14,7)$, or its standard quotient or graph with intersection array $\{49,36,1 ; 1,12,49\}$, or
(iii) $s=7$ and Γ has intersection array $\{64,42,1 ; 1,21,64\}$, or
(iv) $s=10$ and Γ is Taylor graph;
(3) $[u]$ the complement of pseudogepmetric graph for $p G_{6}(s, 5), \Gamma$ is strongly regular graph with parameters (259, 42, 5, 7), (356, 85, 30, 17), and $s=8,6$ respectively, or $s=12$ and Γ is Taylor graph;
(4) $[u]$ is the conference graph with parameters $(4 l+1,2 l, l-1, l), l \in\{21,22,24,25,27,28,29,30\}$ and Γ is Taylor graph.

This work was supported by the grant of Russian Science Foundation, project no. 15-11-10025.

References

[1] A. Makhnev, Strongly regular graphs with nonprincipal eigenvalue 4 and its extensions. Izvestiya of Gomel University, 2014. V. 84, N 3. 84-85.

