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We use the term ”group” while meaning ”finite group” and the term ”graph” while meaning ”undirected
graph without loops and multiple edges”.

Let G be a group. Denote by π(G) the set of all prime divisors of the order of G and by ω(G) the
spectrum of G, i.e., the set of all its element orders. The set ω(G) defines the Gruenberg–Kegel graph
(or the prime graph) Γ(G) of G; in this graph, the vertex set is π(G) and different vertices p and q are
adjacent if and only if pq ∈ ω(G).

We say that a graph Γ with |π(G)| vertices is realizable as the Gruenberg–Kegel graph of a group G
if there exists a marking the vertices of Γ by different primes from π(G) such that the marked graph is
equal to Γ(G). A graph Γ is realizable as the Gruenberg–Kegel graph of a group if Γ is realizable as the
Gruenberg–Kegel graph of an appropriate group G.

The following problem arises.

Problem. Let Γ be a graph. Is Γ realizable as the Gruenberg–Kegel graph of a group?

Of course, in general, the problem has negative solution. For example, the graph consisting of five
pairwise non-adajcent vertices (5-coclique) is not realizable as the Gruenberg–Kegel graph of a group.

In this talk, we will tell on the realizability of some graphs as Gruenberg–Kegel graphs of groups. In
particular, we prove the following theorem.

Theorem. Let Γ be a complete bipartite graph Km,n, where m ≤ n. Then Γ is realizable as the
Gruenberg–Kegel graph of a group if and only if m+ n ≤ 6 and (m,n) 6= (3, 3).

Yekaterinburg, Russia August, 9-15, 2015


