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The Star graph Sn = Cay(Symn, ST ), n > 2 is a Cayley graph on the symmetric group Symn with
the generating set of transpositions ST = {ti ∈ Symn, 2 6 i 6 n} exchanging i’th element of the
permutation with the first. Graph Sn, n > 3, is bipartite, therefore contains only even cycles of lengths
Cl, where 6 6 l 6 n! [1] and has the diameter D = b 3(n−1)

2 c.
The current work continues the study of cyclic structure of the Star graph, started in [2], under

a different approach. The distribution and the structure of vertices at each distance layer d, where
1 6 d 6 D, from the identity vertex is known [3]. We employ this result to study the number of cycles of
lengths 2d, 3 6 d 6 D, constructed from two non-intersecting shortest paths to the vertex at distance d
from the identity vertex. The study of such cycles is closely related to the method proposed to solve the
First Passage Percolation problem on graphs [4, 5].

Any permutation π ∈ Symn can be represented uniquely in terms of non-intersecting cycles, i.e.
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Denote the cycle of length l containing the element ”1” as l−CO and not containing it as l−CN , then
the vertices on the distance layer d may have either

1. only a (d+ 1)− CO;

2. an m − CO, 1 6 m 6 d − 2 and k > 1 items of li − CN , where 1 6 i 6 k, such that d =
k + (m− 1) +

∑k
i=1 li.

The following theorems describe the distribution of distinct cycles in the Star graph Sn for 3 6 d 6 D.

Theorem 1 The number of cycles of length 2d passing through the vertices with 1−CO and k > 2 items
of li − CN , over all k +

∑k
i=1 li = d, is

NC1
= O

(
k!(d− 3k − 2)4k−2 + k!(d− 3k − 2)3k−1

)
(n− 1) . . . (n− d+ k).

Theorem 2 The number of cycles of length 2d passing through the vertices with m − CO and k > 2
items of li − CN , over all m− 1 + k +

∑k
i=1 li = d, is

NC2 = O
(
(k!)2(d− 3k − 3)4k−2

)
(n− 1) . . . (n− d+ k).
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