The distribution of cycles of length $O(n)$ in the Star graph

Alexey Medvedev
Sobolev Institute of Mathematics, Novosibirsk, Russia
Central European University, Budapest, Hungary
an_medvedev@yahoo.com

The Star graph $S_{n}=\operatorname{Cay}\left(S y m_{n}, S T\right), n \geqslant 2$ is a Cayley graph on the symmetric group $S y m_{n}$ with the generating set of transpositions $S T=\left\{t_{i} \in \operatorname{Sym}_{n}, 2 \leqslant i \leqslant n\right\}$ exchanging i 'th element of the permutation with the first. Graph $S_{n}, n \geqslant 3$, is bipartite, therefore contains only even cycles of lengths C_{l}, where $6 \leqslant l \leqslant n![1]$ and has the diameter $D=\left\lfloor\frac{3(n-1)}{2}\right\rfloor$.

The current work continues the study of cyclic structure of the Star graph, started in [2], under a different approach. The distribution and the structure of vertices at each distance layer d, where $1 \leqslant d \leqslant D$, from the identity vertex is known [3]. We employ this result to study the number of cycles of lengths $2 d, 3 \leqslant d \leqslant D$, constructed from two non-intersecting shortest paths to the vertex at distance d from the identity vertex. The study of such cycles is closely related to the method proposed to solve the First Passage Percolation problem on graphs [4,5].

Any permutation $\pi \in S y m_{n}$ can be represented uniquely in terms of non-intersecting cycles, i.e.

$$
\pi=\left(1 \pi_{2}^{1} \ldots \pi_{l_{1}}^{1}\right)\left(\pi_{1}^{2} \ldots \pi_{l_{2}}^{2}\right) \ldots\left(\pi_{1}^{k} \ldots \pi_{l_{k}}^{k}\right)
$$

Denote the cycle of length l containing the element " 1 " as $l-C O$ and not containing it as $l-C N$, then the vertices on the distance layer d may have either

1. only a $(d+1)-C O$;
2. an $m-C O, 1 \leqslant m \leqslant d-2$ and $k \geqslant 1$ items of $l_{i}-C N$, where $1 \leqslant i \leqslant k$, such that $d=$ $k+(m-1)+\sum_{i=1}^{k} l_{i}$.
The following theorems describe the distribution of distinct cycles in the Star graph S_{n} for $3 \leqslant d \leqslant D$.
Theorem 1 The number of cycles of length $2 d$ passing through the vertices with $1-C O$ and $k \geqslant 2$ items of $l_{i}-C N$, over all $k+\sum_{i=1}^{k} l_{i}=d$, is

$$
N_{C_{1}}=O\left(k!(d-3 k-2)^{4 k-2}+k!(d-3 k-2)^{3 k-1}\right)(n-1) \ldots(n-d+k) .
$$

Theorem 2 The number of cycles of length $2 d$ passing through the vertices with $m-C O$ and $k \geqslant 2$ items of $l_{i}-C N$, over all $m-1+k+\sum_{i=1}^{k} l_{i}=d$, is

$$
N_{C_{2}}=O\left((k!)^{2}(d-3 k-3)^{4 k-2}\right)(n-1) \ldots(n-d+k) .
$$

The work has been supported by RFBS Grant 15-01-05867 and Grant NSh-1939.2014.1 of President of Russia for Leading Scientific Schools.

References

[1] J. S. Jwo, S. Lakshmivarahan, S. K. Dhall, Embedding of cycles and grids in star graphs // J. Circuits Syst. Comput. 1991. Vol. 19, no. 1. P. 43-74.
[2] E. V. Konstantinova, A. N. Medvedev, Small cycles in the Star graph // Siberian Electronic Mathematical Reports. 2014. Vol. 11. P. 906-914.
[3] L. Wang, S. Subramanian, S. Latifi, P. K. Srimani, Distance distribution of nodes in star graphs // Applied Mathematics Letters. 2006. Vol. 19, no. 8. P. 780-784.
[4] J. A. Fill, R. Pemantle, Percolation, First-Passage Percolation and Covering Times for Richardson's Model on the n-Cube // Ann. Appl. Probab. 1993. Vol. 3, no. 2. P. 593-629.
[5] M. Eckhoff, J. Goodman, R. van der Hofstad, F. R. Nardi, Short Paths for First Passage Percolation on the Complete Graph // Journal of Statistical Physics. 2013. Vol. 151, no. 6. P. 1056-1088.

