On a generalization of relations schemas, related to groups $U_{3}(q)$ and ${ }^{2} G_{2}\left(3^{2 l+1}\right)$

Ildar Mukhametyanov
Lysva Branch of Perm National Research Polytechnic University, Lysva, Russia

Let X be a finite set, $R_{i}(i=0,1, \ldots, d)$ - binary relations on X, that satisfy conditions of symmetric commutative associative scheme of relations on d classes (see definitions in [1]), except condition of constancy number of intersections $p_{i j}^{1}$. Pair $\left(X,\left\{R_{i}\right\}_{\{0 \leqslant i \leqslant d\}}\right)=\mathcal{X}(X)$ is called scheme, $\Gamma^{(i)}=\left(X, R_{i}\right)-$ graph of i-th relation. Scheme $\mathcal{X}(X)$ is called scheme of cliques if:

1. Graph $\Gamma^{(1)}$ of 1 st relation is disconnected with $n+1$ connected components - cliques K_{1}, K_{2}, \ldots, K_{n+1} with $d-1$ vertices each.
2. If x is fixed vertex of clique $K_{s}, K_{t} \neq K_{s}, y$ iterates over vertices from K_{t}, then in $(x, y) \in R_{i}$ index i iterates over indices from $2,3, \ldots, d$.

If scheme of cliques satisfies the additional condition
3. If i, j, k and s, t, l are arbitrary sets of pairwise distinct indices from $\{2,3, \ldots, d\}$, then $p_{i j}^{k}=p_{s t}^{l}$, $p_{i i}^{k}=p_{s s}^{l}, p_{i i}^{i}=p_{s s}^{s}$, and $p_{i j}^{1} \in\{0, r\}, r \neq 0$, then it called scheme of cliques with the absolute number of intersections.

In [2] was announced existence of these schemes on the class X of conjugate elements of prime order p from centers of p-Sylow subgroups in group $G \in\left\{L_{2}(q), S z(q), U_{3}(q)\right\}$ (with even $q \geqslant 4$ in last case) with $q=p^{m}$, where p is prime. Also was announced distance-regularity with array of intersections $\left\{n, n-p_{i i}^{i}-1,1 ; 1, p_{i i}^{k}, n\right\}$ of their graphs $\Gamma^{(i)} i$-th relations with $i \in\{2,3, \ldots, d\}, k \neq i$, where $p_{i i}^{k}=p_{i i}^{i}=$ $(n-1) /(d-1)$. Proved

Theorem. If $G \in\left\{U_{3}(q),{ }^{2} G_{2}(q)\right\}, q=p^{m}$ - degree of odd prime number p with $q=3^{2 l+1}$ in case $G={ }^{2} G_{2}(q), X$ - class of conjugate elements of order p from centers of p-Sylow subgroup of group G, then on X can be defined relations $R_{i}(i=0,1, \ldots, d)$, such that $\left(X,\left\{R_{i}\right\}_{\{0 \leqslant i \leqslant d\}}\right)$ - scheme of cliques with $d=q, n=q^{3} u p_{i j}^{k}=p_{i i}^{k}=p_{i i}^{i}=2\left(q^{2}+q+1\right)$ for all $i, j, k \in\{2,3, \ldots, d\}$.

References

[1] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemees, Benjamin-Cummings Lecture Note Ser.58, The Benjamin/Cummings Publishing Company, Ins., London (1984)
[2] I. T. Mukhamet'yanov, On a generalization of association schemes and related antipodal distance regular graphs with diameter $3 / /$ Maltsev Meeting: Abstracts of Intern. Conf. Novosibirsk, 2014. P. 73 (in Russian).

