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All groups considered are finite. There have been a lot of papers recently in which with every finite
group associates certain graph. The considered problem was to analyze the relations between the structure
of a group and the properties of its graph. This trend goes back to 1878 when A. Cayley [1] introduced
his graph.

Let π(G) be the set of prime divisors of |G|. Recall [2] that the Gruenberg-Kegel or the prime graph Γp

of a group G is the graph with the vertex set π(G) and (p, q) is an edge if and only if G contains element
of order pq. This graph is connected to the problem of recognition of groups by their graph. Recall that
a group G is called recognizable by the prime graph if Γp(G) = Γp(H) implies H ' G for any group H.
There are many non-isomorphic groups with nontrivial solvable radical and the same prime graph. That
is why of prime interest (for example see [3]) is this problem only for simple and almost simple groups.
In this paper we will consider the recognition problem up to a class of groups.

Definition 1. A function Γ : {groups} → {graphs} is called graph function.

Definition 2. Let Γ be a graph function and X be a class of groups. We shall say that X is recognized
by Γ if from G1 ∈ X and Γ(G1) = Γ(G2) it follows that G2 ∈ X.

Problem 1. (a) Let Γ be a graph function. Describe all group classes (formations, Fitting classes,
Schunk classes) that are recognizable by Γ.

(b) Let X be a class of groups (formation, Fitting class, Schunk class). Find graph functions Γ that
recognize X.

T. Hawkes [4] in 1968 considered a directed graph of a group G whose set of vertices is π(G) and
(p, q) is an edge if and only if q ∈ π(G/Op′,p(G)). In particular he showed that a group G has a Sylow
tower for some linear order φ if and only if its graph has not got circuits. We shall call this graph Hawkes
graph and will denote it ΓH(G).

Theorem 1. Let F be a formation of groups. Then F is recognized by ΓH if and only if F = LF (f) is
a local formation where f is formation function defined as follows: f(p) = Gf(p) if p ∈ π(F) and f(p) = ∅
otherwise.

References

[1] A. Cayley. Desiderata and suggestions: No. 2. The Theory of groups: graphical representation. Amer. J.
Math. 1(2) (1878), 174–176.

[2] J. S. Williams, Prime graph components of finite groups, J. Algebra 69(2) (1981), 487–513.

[3] A. V. Vasil’ev, I. B. Gorshkov. On recognition of finite simple groups with connected prime graph. Sib. Mat.
J. 50(2) (2009), 233–238.

[4] T. Hawkes, On the class of the Sylow tower groups. Math. Z. 105 (1968), 393–398.

Yekaterinburg, Russia August, 9-15, 2015


