Formations of finite groups and Hawkes graph

Viachaslau Murashka and Alexander Vasil'ev
F. Skorina Gomel State University, Gomel, Belarus

All groups considered are finite. There have been a lot of papers recently in which with every finite group associates certain graph. The considered problem was to analyze the relations between the structure of a group and the properties of its graph. This trend goes back to 1878 when A. Cayley [1] introduced his graph.

Let $\pi(G)$ be the set of prime divisors of $|G|$. Recall [2] that the Gruenberg-Kegel or the prime graph Γ_{p} of a group G is the graph with the vertex set $\pi(G)$ and (p, q) is an edge if and only if G contains element of order $p q$. This graph is connected to the problem of recognition of groups by their graph. Recall that a group G is called recognizable by the prime graph if $\Gamma_{p}(G)=\Gamma_{p}(H)$ implies $H \simeq G$ for any group H. There are many non-isomorphic groups with nontrivial solvable radical and the same prime graph. That is why of prime interest (for example see [3]) is this problem only for simple and almost simple groups. In this paper we will consider the recognition problem up to a class of groups.

Definition 1. A function $\Gamma:\{$ groups $\} \rightarrow$ \{graphs $\}$ is called graph function.
Definition 2. Let Γ be a graph function and \mathfrak{X} be a class of groups. We shall say that \mathfrak{X} is recognized by Γ if from $G_{1} \in \mathfrak{X}$ and $\Gamma\left(G_{1}\right)=\Gamma\left(G_{2}\right)$ it follows that $G_{2} \in \mathfrak{X}$.

Problem 1. (a) Let Γ be a graph function. Describe all group classes (formations, Fitting classes, Schunk classes) that are recognizable by Γ.
(b) Let \mathfrak{X} be a class of groups (formation, Fitting class, Schunk class). Find graph functions Γ that recognize \mathfrak{X}.
T. Hawkes [4] in 1968 considered a directed graph of a group G whose set of vertices is $\pi(G)$ and (p, q) is an edge if and only if $q \in \pi\left(G / O_{p^{\prime}, p}(G)\right)$. In particular he showed that a group G has a Sylow tower for some linear order ϕ if and only if its graph has not got circuits. We shall call this graph Hawkes graph and will denote it $\Gamma_{H}(G)$.

Theorem 1. Let \mathfrak{F} be a formation of groups. Then \mathfrak{F} is recognized by Γ_{H} if and only if $\mathfrak{F}=L F(f)$ is a local formation where f is formation function defined as follows: $f(p)=\mathfrak{G}_{f(p)}$ if $p \in \pi(\mathfrak{F})$ and $f(p)=\emptyset$ otherwise.

References

[1] A. Cayley. Desiderata and suggestions: No. 2. The Theory of groups: graphical representation. Amer. J. Math. 1(2) (1878), 174-176.
[2] J. S. Williams, Prime graph components of finite groups, J. Algebra $\mathbf{6 9}(2)$ (1981), 487-513.
[3] A. V. Vasil'ev, I. B. Gorshkov. On recognition of finite simple groups with connected prime graph. Sib. Mat. J. 50(2) (2009), 233-238.
[4] T. Hawkes, On the class of the Sylow tower groups. Math. Z. 105 (1968), 393-398.

