Perfect k-colorings of infinite circulant graphs with a continuous set of distances

Olga Parshina
Novosibirsk State University, Novosibirsk, Russia

Consider an infinite graph $C i_{\infty}\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)$, whose set of vertices is the set of integers, and two vertices are adjacent if they are on the distance $d \in\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right\}$. Let us call it an infinite circulant graph. Also we consider a finite graph $C i_{t}\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)$ with the set of vertices coinciding with the set Z_{t} and for each vertex v the multiset of incident edges is $\left\{\left(v, v+d_{i} \bmod \mathrm{t}\right) \mid i=1,2, \ldots, n\right\}$. There is a natural homomorphism from the set of vertices of the graph $C i_{\infty}\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)$ on the set of vertices of the graph $C i_{t}\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)$ corresponding with the homomorphism from Z to Z_{t}.

Let k be a positive integer. A k-coloring of vertices of a graph $G=(V, E)$ is a map $\varphi: V \rightarrow\{1,2, \ldots, k\}$. If $\varphi(v)=s$ for some vertex v, then s is the color of v.

A k-coloring of vertices is called perfect, if for each $i, j=1,2, \ldots, k$ are not necessarily different there is an uniquely defined non-negative integer $\alpha_{i j}$ which is equal to the number of vertices of the color j in the neighborhood of each vertex of the color i. The period T of a coloring is a sequence $\gamma_{1} \gamma_{2} \ldots \gamma_{r}$, where $\gamma_{i}=\varphi\left(v_{m+i}\right)$ for some number m, and $\varphi\left(v_{l}\right)=\varphi\left(v_{l+j r}\right)$ for every l and j. The number r is the length of the period T. It is clear that the coloring of a regular graph is uniquely defined by its period.

Perfect 2-colorings of circulant graphs are considered in [1,2]. We are interested in so-called circulant graphs with a continuous set of distances, i.e. in ones with the property $d_{i}=i, i=1,2,3, \ldots, n$. The fool description of 2-colorings of graphs $C i_{\infty}(n)=C i_{\infty}(1,2, \ldots, n)$ for an arbitrary positive integer n is given in [2]. A description of colorings with k colors for $k \geq 3$ presents severe difficulties, in particular, the natural homomorphism from n-dimensional grid Z^{n} on $C i_{\infty}(n)$ shows that the problem is rather complicate.

Here we present the main result:
Theorem Let k, n be positive integers. The set of perfect colorings of a graph $C i_{\infty}(n)$ contains all perfect colorings of graphs $C i_{t}(n)$ for $t=2 n, 2 n+1,2 n+2$ and the following ones:

1. 123...k;
2. $123 \ldots(k-1) k(k-1) \ldots 32$;
3. 123... $(k-1) k k(k-1) \ldots 32$;
4. $123 \ldots(k-1) k k(k-1) \ldots 321$.

It should be noted that last four colorings in the theorem are perfect for every n.
We conjecture that there are no other perfect colorings of the $C i_{\infty}(n)$.

References

[1] D. B. Khoroshilova, On circular perfect two-color colorings. (Russian). Diskretn. Anal. Issled. Oper. 16(1) (2009) 80-92.
[2] O. G. Parshina, Perfect 2-colorings of infinite circulant graphs with continuous set of distances, Journal of Applied and Industrial Mathematics. 8(3) (2014) 357-361.

