On some subgroups of finite products of generalized nilpotent groups

Elena Rjabchenko, Tatsiana Vasilyeva Belarusian State University of Transport, Gomel, Belarus

All groups considered are finite. Let a group G = AB be a product of two its subgroups A and B. A subgroup H of G = AB is called prefactorized if $H = (A \cap H)(B \cap H)$, it is called factorized [1] if, in addition, H contains the intersection $A \cap B$. For a saturated formation Heineken [2], for a Schunck class \mathfrak{X} Amberg and Höfling [3] investigated prefactorized and factorized \mathfrak{X} -maximal subgroups (in particular \mathfrak{X} -projectors) of the group G = AB with nilpotent subgroups A and B (see [4, 3.2.20, 3.2.22]).

We use notations and definitions from [5], [6]. Let π be a set of primes and π' the complement to π in the set of all primes. A group G is called π -decomposable if $G = G_{\pi} \times G_{\pi'}$ and a Hall π -subgroup G_{π} is nilpotent. The set of distinct primes dividing |G| is denoted by $\pi(G)$. A non-empty homomorph \mathfrak{X} is a Schunck class if any group G, all of whose primitive factor groups are in \mathfrak{X} , is itself in \mathfrak{X} . If \mathfrak{H} and \mathfrak{X} are classes of groups then $\mathfrak{H} \mathfrak{X} = (G|G)$ has a normal subgroup $N \in \mathfrak{H}$ with $G/N \in \mathfrak{X}$. $\mathfrak{G}_{\pi'}$ denotes the class of all π' -groups.

Theorem. Let \mathfrak{X} be a class of groups and $\mathfrak{X} = \mathfrak{G}_{\pi'}\mathfrak{X}$. Let G be a π -soluble group and G = AB be a product of two π -decomposable subgroups A and B.

1) If \mathfrak{X} is a Schunck class such that $\pi(A) \cap \pi(B) \subseteq Char(\mathfrak{X})$, then every \mathfrak{X} -maximal subgroup of G has a factorized conjugate.

2) If \mathfrak{X} is a saturated formation, then every \mathfrak{X} -maximal subgroup of G has a prefactorized conjugate.

Recall that a subgroup H of a group G is an \mathfrak{X} -projector if HN/N is \mathfrak{X} -maximal in G/N for every normal subgroup N of G. If \mathfrak{X} is a Schunck class and $\mathfrak{X} = \mathfrak{G}_{\pi'}\mathfrak{X}$ then every π -soluble group G has an \mathfrak{X} -projector and any two \mathfrak{X} -projectors of G are conjugate [7].

Corollary. Let \mathfrak{X} be a class of groups and $\mathfrak{X} = \mathfrak{G}_{\pi'}\mathfrak{X}$. Let G be a π -soluble group and G = AB be a product of two π -decomposable subgroups A and B.

1) If \mathfrak{X} is a Schunck class such that $\pi(A) \cap \pi(B) \subseteq Char(\mathfrak{X})$, then G has a unique factorized \mathfrak{X} -projector.

2) If \mathfrak{X} is a saturated formation, then G has a unique prefactorized \mathfrak{X} -projector.

The example 1 [3] shows that the condition $\pi(A) \cap \pi(B) \subseteq Char(\mathfrak{X})$ of theorem can not be discarded.

References

- [1] H. Wielandt, Über Produkte von nilpotenten Gruppen. Illinois. J. Math. 2 (1958) 611-618.
- [2] H. Heineken, Products of finite nilpotent groups. Math. Ann. 287 (1990) 643-652.
- [3] B. Amberg, B. Höfling, On finite products of nilpotent groups. Arch. Math. 63 (1994) 1-8.
- [4] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups. Berlin/New York: Walter de Gruyter, 2010.
- [5] L.A. Shemetkov, Formations of finite groups. Moskow: Nauka, 1978. (in Russian)
- [6] K. Doerk, T. Hawkes, Finite soluble groups. Berlin-New York: Walter de Gruyter, 1992.
- [7] R. Covaci, Some properties of projectors in finite π-soluble groups. Studia Univ. Babes-Bolyai. Math. 26: 1 (1981) 5-8.