Minimal generating systems and properties of sylow 2-subgroup of alternating group

Ruslan Skuratovskii

National Technical University "KPI" of Kyiv, Kyiv, Ukraine.

The aim of this paper is to research the structure of Sylow 2-subgroups and to construct a minimal generating system for such subgroups. Case of sylow subgroup where p = 2 is very special because it admits odd permutations, this case was not investigated in [1,2]. There was a mistake in a statement about irreducebilyty that system of k + 1 elements for $Syl_2(A_{2^k})$ which was in abstract [3] in 2015 year. All undeclared terms are from [4]. A minimal system of generators for a sylow subgroup of A_n was found.

Let's denote by T_{k+1} a regular binary tree labeled by vertex. If the state in the vertex is nontrivial, then its label is 1, in other case it is 0. We denote by $v_{j,i}$ the vertex of L_j , which has the number *i*. An automorphism of T_{k+1} with non-trivial state in $v_{1,i_1}, \ldots, v_{1,i_j}, v_{2,j_2}, \ldots, v_{k,k_m}$ is denoted by $\beta_{l_1,(i_1,\ldots,i_J);l_1(i_1,\ldots,i_J);\ldots,l_{k-1}(i_1,\ldots,i_J)}$ where the index l_i is the number of level with non-trivial state. In parentheses after this numbers we denote a cortege of vertices of this level, where the non-trivial states in this automorphism are present. Denote by τ the automorphism, which has a non-trivial vertex permutation only in the first and the last vertices $v_{k,1}$ and $v_{k,2^k}$ of the last level L_k .

Lemma 1. The set of elements from subgroup of $AutT_k$: $\alpha_{0,(1)}$, $\alpha_{1,(1)}$, $\alpha_{2,(1)}$, $\alpha_{k-2,(1)}$, τ , is system of generators for $Syl_2(A_{2^k})$.

Lemma 2. Oders of groups $\langle \alpha_{0,(1)}, \alpha_{1,(1)}, \alpha_{2,(1)}, \alpha_{k-2,(1)}, \tau \rangle$ and $Syl_2(A_{2^k})$ are equal to $2^{2^{k-2}}$.

Main Theorem. The set of elements from subgroup of $AutT_k \beta_{0,(1);k,(1,2^k)}$, $\beta_{1,(1);k,(2^{k-1},2^{k-1}+1)}$, $\beta_{2,(1)}$, $\dots, \beta_{k-2,(1)}$ is minimal generators for a Sylow 2-subgroup of A_{2^k} .

For example minimal system for $Syl_2(A_{16})$:

It was proved that the structure of sylow 2-subgroup of A_{2^k} is the following: $\underset{i=1}{\overset{k-1}{\underset{i=1}{\circ}}} C_2 \ltimes \prod_{i=1}^{2^k-1} C_2$, where we take C_2 as group of action on two elements and action is faithful.

References

- U. Dmitruk, V. Suschansky, Structure of 2-sylow subgroup of symmetric and alternating group. UMJ. 3 (1981) 304-312.
- [2] R. Skuratovskii, Generators and relations for sylows p-subgroup of group S_n . Naukovi Visti KPI. 4 (2013) 94 -105.
- [3] V. Ivanchenko, System of generators for 2-sylow subgroup alternating group, Four ukraine conference of yung scitntists. Kiev: KPI (2015) 60.
- [4] P. Grigorchuk, P. Nekrashevich, P. Sushchanskii, Automata, Dynamical Systems, and Groups, Trudy mat. inst. imeny Steklova. №231. (2000) 134–214.