Minimal generating systems and properties of sylow 2-subgroup of alternating group

Ruslan Skuratovskii
National Technical University "KPI" of Kyiv, Kyiv, Ukraine.

The aim of this paper is to research the structure of Sylow 2-subgroups and to construct a minimal generating system for such subgroups. Case of sylow subgroup where $p=2$ is very special because it admits odd permutations, this case was not investigated in [1, 2]. There was a mistake in a statement about irreducebilyty that system of $k+1$ elements for $S y l_{2}\left(A_{2^{k}}\right)$ which was in abstract [3] in 2015 year. All undeclared terms are from [4]. A minimal system of generators for a sylow subgroup of A_{n} was found.

Let's denote by T_{k+1} a regular binary tree labeled by vertex. If the state in the vertex is nontrivial, then its label is 1 , in other case it is 0 . We denote by $v_{j, i}$ the vertex of L_{j}, which has the number i. An automorphism of T_{k+1} with non-trivial state in $v_{1, i_{1}}, \ldots, v_{1, i_{j}}, v_{2, j_{2}}, \ldots, v_{k, k_{m}}$ is denoted by $\beta_{l_{1},\left(i_{1}, \ldots i_{J}\right) ; l_{1}\left(i_{1}, \ldots i_{J}\right) ; \ldots ; l_{k-1}\left(i_{1}, \ldots i_{J}\right)}$ where the index l_{i} is the number of level with non-trivial state. In parentheses after this numbers we denote a cortege of vertices of this level, where the non-trivial states in this automorphism are present. Denote by τ the automorphism, which has a non-trivial vertex permutation only in the first and the last vertices $v_{k, 1}$ and $v_{k, 2^{k}}$ of the last level L_{k}.

Lemma 1. The set of elements from subgroup of $A u t T_{k}: \alpha_{0,(1)}, \alpha_{1,(1)}, \alpha_{2,(1)}, \alpha_{k-2,(1)}, \tau$, is system of generators for $\operatorname{Syl}_{2}\left(A_{2^{k}}\right)$.
Lemma 2. Oders of groups $\left\langle\alpha_{0,(1)}, \alpha_{1,(1)}, \alpha_{2,(1)}, \alpha_{k-2,(1)}, \tau\right\rangle$ and $S y l_{2}\left(A_{2^{k}}\right)$ are equal to $2^{2^{k-2}}$.
Main Theorem. The set of elements from subgroup of $A u t T_{k} \beta_{0,(1) ; k,\left(1,2^{k}\right)}, \beta_{1,(1) ; k,\left(2^{k-1}, 2^{k-1}+1\right)}, \beta_{2,(1)}$, $\ldots, \beta_{k-2,(1)}$ is minimal generators for a Sylow 2-subgroup of $A_{2^{k}}$.

For example minimal system for $\operatorname{Syl}_{2}\left(A_{16}\right)$:

It was proved that the structure of sylow 2-subgroup of $A_{2^{k}}$ is the following: ${ }_{i=1}^{k-1} C_{2} \ltimes \prod_{i=1}^{2^{k}-1} C_{2}$, where we take C_{2} as group of action on two elements and action is faithful.

References

[1] U. Dmitruk, V. Suschansky, Structure of 2-sylow subgroup of symmetric and alternating group. UMJ. 3 (1981) 304-312.
[2] R. Skuratovskii, Generators and relations for sylows p-subgroup of group S_{n}. Naukovi Visti KPI. 4 (2013) 94-105.
[3] V. Ivanchenko, System of generators for 2-sylow subgroup alternating group, Four ukraine conferense of yung scitntists. Kiev: KPI (2015) 60.
[4] P. Grigorchuk, P. Nekrashevich, P. Sushchanskii, Automata, Dynamical Systems, and Groups, Trudy mat. inst. imeny Steklova. №231. (2000) 134-214.

