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In the theory of groups are well known results on the complementarity of an F-residual GF in a finite
group G where F is a local formation (see, for example, [1]). Using the properties of F-normalizers of
G we obtain new results on the complementarity of GF by F-normalizers of the group G where F is an
ω-local Fitting formation and ω ⊆ π(F).

We consider only finite groups. Not listed designations and definitions can be found in [1]. Let ω be a
non-empty subset of the set of all primes P, f : ω ∪ {ω′} → { formations of groups } is an ωF -function.
A formation F = (G : G/Oω(G) ∈ f(ω′) and G/Fp(G) ∈ f(p) for all p ∈ ω ∩ π(G)) is called an ω-local
formation with the ω-satellite f . Following [2] (see definition 2.6.1 [2]) we state the following definitions.

Definition 1. Let F be a non-empty formation. A normal subgroup R of the group G is called an
F-limited normal subgroup of G if R ≤ GF and R/R ∩Φ(G) is a chief factor of the group G. A maximal
subgroup M of G is called F-critical in G if G = MR for some F-limited normal subgroup R of G.

Definition 2. Let F be a non-empty ω-local formation. A subgroup H of the group G is called an
F-normalizer of G if H/Φ(H) ∩ Oω′(H) ∈ F and there exists a maximal chain H = Ht ⊂ Ht−1 ⊂ · · · ⊂
H1 ⊂ H0 = G where Hi is an F-critical subgroup of Hi−1 for each i = 1, 2, . . . , t and 0 ≤ t.

Theorem 1. Let F be a non-empty ω-local formation and let G be a group. Then there exists at least
one F-normalizer H of the group G and G = GFH.

Theorem 2. Let F be a non-empty ω-local Fitting formation and let G = A1A2 · · ·An be a group
where Ai is a subnormal subgroup of G for each i = 1, 2, . . . , n and ω ⊆ π = π(F). If a F-residual of Ai

is ω-soluble and for every p ∈ ω Sylow p-subgroups of AF
i is abelian for each i = 1, 2, . . . , n then every

F-normalizer of G is an ω-complement for GF in G.

Corollary 1. Let F be a local non-empty Fitting formation and let G = A1A2 · · ·An be a group where
Ai is a subnormal subgroup of G for each i = 1, 2, . . . , n. If an F-residual AF

i is π(F)-soluble for every
i = 1, 2, . . . , n and its Sylow p-subgroups are abelian for all p ∈ π(F) then each F-normalizer of G is the
complement for F-residual GF in G.

Corollary 2. Let F be a local non-empty Fitting formation and let G = A1A2 · · ·An be a group
where Ai is a subnormal subgroup of G for each i = 1, 2, . . . , n. If F-residual AF

i is abelian for every
i = 1, 2, . . . , n then each F-normalizer of G is the complement for F-residual GF in G.

Theorem 3 Let F be a non-empty ω-local formation, let G be a group and let ω1 be a set of all primes
p ∈ ω for which GF has an abelian Sylow p-subgroup. Then GF has an ω1-complement in any extension
of G.

Theorem 4 Let F be a non-empty ω-local formations, let Γ be an extension of the group G and let
ω1 = {p ∈ P| p divides (| Γ : GF |, | GF |)}. If ω1 ⊆ ω and a Sylow p-subgroup of GF is abelian for each
p ∈ ω1, then GF has a complement in the group Γ.
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