The eigenfunctions with the minimum support of the cubic distance-regular graphs

Evgeniya Sotnikova Sobolev Institute of Mathematics, Novosibirsk, Russia lucernavesper@gmail.com

Let G = (V, E) be an undirected graph without loops and multiple edges with the vertex set $V = \{1, 2, ..., n\}$ and the edge set E. G is regular if each vertex has the same number k of the neighbours. The parameter k is called the *degree* of the graph. For any vertices $v, u \in V$ the *distance* d(v, u) is the number of edges in the shortest path that connects them. By $G_i(v)$ we denote the set of the vertices that are at distance i from v. A connected graph G is called *distance-regular* if it is regular of degree k and for any two vertices $v, u \in V$ at distance i = d(v, u), there are precisely c_i neighbours of u in $G_{i-1}(v)$ and b_i neighbours of u in $G_{i+1}(v)$. The numbers $b_i, c_i, a_i = k - b_i - c_i$ are called the *intersection numbers* of G.

Consider the adjacency matrix A of order n, defined as following:

$$A_{ij} = \begin{cases} 1, \text{ when } ij \in E\\ 0, \text{ when } ij \notin E \end{cases}$$

For a matrix A let $\Lambda = \{\lambda_1, \ldots, \lambda_t\}$ be the set of its eigenvalues. If $f = (f_1, \ldots, f_n)$ is a function on the graph vertices that satisfies the equation $Af = \lambda f$, we call it an *eigenfunction* of the graph G corresponding to the eigenvalue λ . The support supp(f) of the function f is the set of its non-zero coordinates, i.e. $supp(f) = \{i \mid f_i \neq 0\}$. We are interested in finding the eigenfunctions with the supports of minimum cardinality.

In the current work we study the distance-regular graphs of the degree k = 3. It is known [1] that up to isomorphism there are only 13 of them: K_4 , $K_{3,3}$, the Petersen graph, the cube, the Heawood graph, the Pappus graph, the Coxeter graph, the Tutte-Coxeter graph, the dodecahedron, the Desargues graph, the Foster graph, the Tutte 12-cage, the Biggs-Smith graph. For all of them, except for the last two graphs, we found the cardinalities of the minimum supports of the eigenfunctions over the field \mathbb{R} and classified their structures for all the eigenvalues.

This research was funded by the Russian Science Foundation (grant No 14-11-00555).

References

 N.L. Biggs, A.G. Boshier, J. Shawe-Taylor, Cubic distance-regular graphs // J. London Math.Soc. 1986. Vol. 33, no. 2. P. 385–394.