On arc-transitive distance-regular covers of complete graphs related to $S U_{3}(q)$

Ludmila Tsiovkina
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

In 1991, P.J. Cameron has discovered a family of arc-transitive distance-regular covers of complete graphs, which are obtained by the following construction proposed in [3, p.90]. Let E be the quadratic extension of the finite field F of q elements. Denote by V the 3 -dimensional vector space over E equipped with a non-degenerate Hermitian form B. Let U be a subgroup of E^{*} of index r. Let Ψ_{r} be the graph on the set of U-orbits on the isotropic vectors of V with two vertices $v U$ and $w U$ being adjacent if and only if $B(v, w)=1$. By [3, Proposition 5.1 (iv)] Ψ_{r} is distance-regular (with intersection array $\left.\left\{q^{3},(r-1)\left(q^{2}-1\right)(q+1) / r, 1 ; 1,\left(q^{2}-1\right)(q+1) / r, q^{3}\right\}\right)$ if and only if either q is even and r divides $q+1$, or q is odd and r divides $(q+1) / 2$. The question naturally arises whether this family comprises (up to isomorphism) all distance-regular covers of complete graphs with the antipodality index dividing $q+1$, which possess an arc-transitive automorphism group, isomorphic to $S U_{3}(q)$. As we will show below, it turns out, that the answer is negative.

Let $G=S U_{3}(q)$ denote the special unitary group on V and put $K=G_{\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle}$, where e_{1} and e_{2} are two non-collinear isotropic vectors of V. Take P to be the subgroup of K of order $q-1$, and let S be the subgroup of $G_{\left\langle e_{1}\right\rangle}$ of order q^{3}. Put $H=S P$. Assume that g is a 2-element of G interchanging $\left\langle e_{1}\right\rangle$ with $\left\langle e_{2}\right\rangle$ such that $g^{2} \in H$. Let $\Gamma(G, H, H g H)$ denote the graph with vertex set $\{H x \mid x \in G\}$ whose edges are the pairs $\{H x, H y\}$ such that $x y^{-1} \in H g H$.

Theorem. If q is odd, then $\Gamma(G, H, H g H)$ is distance-regular if and only if g is an element of order 4, while if q is even, then g is an involution and $\Gamma(G, H, H g H)$ is a distance-regular graph isomorphic to Ψ_{q+1}. In both cases, the resulting distance-regular graph has intersection array $\left\{q^{3}, q\left(q^{2}-1\right), 1 ; 1, q^{2}-\right.$ $\left.1, q^{3}\right\}$, does not depend on the choice of the element g (of the given order) and admits distance-regular quotients with intersection array $\left\{q^{3},(i-1)\left(q^{2}-1\right)(q+1) / i, 1 ; 1,\left(q^{2}-1\right)(q+1) / i, q^{3}\right\}$ for each proper divisor i of $q+1$.

Remark. Assume that q is odd and let g be of order 4. Distance-regularity of $\Gamma(G, H, H g H)$ appear to be first shown in the course of this work. Note that if γ is an element of E^{*} such that $\gamma^{q}=-\gamma$ and $U=F^{*}$, then $\Gamma(G, H, H g H)$ is isomorphic to the graph Φ on the set of U-orbits on the isotropic vectors of V with two vertices $v U$ and $w U$ being adjacent if and only if $B(v, w) \in U \gamma$. The construction of the graph Φ fits in the construction described in [2, Proposition 12.5.4], which generalizes the Cameron construction. However, the case $r=q+1$ for an odd q has not been completely considered in [2]. Note also, that if in definition of Φ we assume $\gamma \in U$ instead of the condition $\gamma^{q}=-\gamma$, then we get $\Phi \simeq \Psi_{q+1} \simeq \Gamma(G, H, H g H)$ for an involution g.

Acknowledgements. This work was supported by Russian Foundation for Basic Research (research project No. 14-01-31298).

References

[1] A.E. Brouwer, A.M. Cohen, A Neumaier. Distance-regular graphs, Berlin etc: Springer-Verlag - 1989. 494 p.
[2] A.E. Brouwer, A.M. Cohen, A Neumaier. Corrections and additions to the book «Distance-regular graphs», manuscript. http://www.win.tue.nl/~ aeb/drg/index.html. Accessed 10 June 2015.
[3] P.J. Cameron. Covers of graphs and EGQs, Discrete Math. 97 (1991) 83-92.

