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Throughout these abstracts, all groups are finite. Recall that a subgroup M of a group G is called
modular in G, if the following hold:

1) 〈X,M ∩ Z〉 = 〈X,M〉 ∩ Z for all X ≤ G,Z ≤ G such that X ≤ Z, and
2) 〈M,Y ∩ Z〉 = 〈M,Y 〉 ∩ Z for all Y ≤ G,Z ≤ G such that M ≤ Z.
Note that a modular subgroup is a modular element (in the sense of Kurosh [1, Chapter 2, p. 43]) of a

lattice of all subgroups of a group. Properties of modular subgroups were studied in the book [1]. Groups
with all subgroups are modular were studied by R. Schmidt [1], [2] and I. Zimmermann [3]. By parity of
reasoning with subnormal subgroup, in [3] the notion of a submodular subgroup was introduced.

Definition [3]. A subgroup H of a group G is called submodular in G, if there exists a chain of
subgroups H = H0 ≤ H1 ≤ . . . ≤ Hs−1 ≤ Hs = G such that Hi−1 is a modular subgroup in Hi for
i = 1, . . . , s.

It’s well known that in a nilpotent group every Sylow subgroup is normal (subnormal). In the paper [3]
groups with submodular subgroups were studied. In particular, it was proved that in a supersoluble group
G every Sylow subgroup is submodular if and only if G/F (G) is abelian of squarefree exponent. A criterion
of the submodularity of Sylow subgroups in an arbitrary group was found.

We continue study of groups with submodular Sylow subgroups. A group we call strongly supersoluble
and denote sU, if it is supersoluble and every Sylow subgroup is submodular in it. Denote B a class of all
abelian groups of exponent free from squares of primes; smU = ( G | every Sylow subgroup of the group
G is submodular in G ).

We obtained the following results:

Theorem 1. Let G be a group. Then the following hold:
1) if G ∈ smU and H ≤ G, then H ∈ smU;
2) if G ∈ smU and N EG, then G/N ∈ smU;
3) if Ni EG and G/Ni ∈ smU, i = 1, 2, then G/N1 ∩N2 ∈ smU;
4) if Hi ∈ smU, Hi EG, i = 1, 2 and H1 ∩H2 = 1, then H1 ×H2 ∈ smU;
5) if G/Φ(G) ∈ smU, then G ∈ smU;
6) the class of groups smU is a hereditary saturated formation.

Theorem 2. The class of all groups with submodular Sylow subgroups is a local formation and has
a local screen f such that f(p) = (G ∈ S | Syl(G) ⊆ A(p− 1) ∩B) for every prime p.

Theorem 3. Let G be a group. Then the following statements are equivalent:
1) every Sylow subgroup is submodular in G;
2) G is Ore dispersive and every its biprimary subgroup is strongly supersoluble;
3) every metanilpotent subgroup of G is strongly supersoluble.
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