About some products K-P-subnormal subgroups of finite groups

Artem Vegera

F. Skorina Gomel State University, Gomel, Belarus

We consider only finite groups. In 1978 O. Kegel [1] proposed the concept of K- \mathfrak{F} -subnomal subgroup. Let \mathfrak{F} be a non-empty hereditary formation. A subgroup H of a group G is called K- \mathfrak{F} -subnormal (\mathfrak{F} -reachable [1]) subgroup of G (denoted H K- \mathfrak{F} -sn G), if there is a chain of subgroups $H = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_n = G$ such that or $H_{i-1} \triangleleft H_i$, or $H_i^{\mathfrak{F}} \subseteq H_{i-1}$, for $i = 1, \ldots, n$.

In papers [2] and [3] A.F.Vasil'ev, T.I.Vasil'eva, V.N.Tyutyanov introduced the definitions of P-subnormality and K-P-subnormality for subgroups respectively.

Definition 1 [3]. A subgroup H of group G is called K-P-subnormal in G (denoted H K-P-sn G), if there is a chain of subgroups $H = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_n = G$ such that either H_{i-1} is normal in H_i or $|H_i: H_{i-1}|$ is prime for every $i = 1, \ldots, n$.

Let \mathfrak{U} be the formation of all supersoluble groups, then every K- \mathfrak{U} -subnormal subgroup of G is K- \mathbb{P} subnormal in G. The converse assertion fails to hold in general.

In [3] authors studied the properties of products of groups G = AB where A and B are K-P-subnormal in G. In the present article we continue investigations of [3] in the case if a group G is the product of its pairwise permutable subgroups G_1, G_2, \ldots, G_n , ie $G = G_1G_2 \ldots G_n$ and $G_iG_j = G_jG_i$ for all integers i and j with $i, j \in \{1, 2, \ldots, n\}$.

Definition 2 [3]. A group G is called \overline{w} -supersoluble if every Sylow subgroup of G is K-P-subnormal in G.

Theorem 1. Let $G = G_1G_2...G_n$ be the product of its pairwise permutable Ore dispersive subgroups $G_1 G_2, ..., G_n$, subgroups $G_i K$ - \mathbb{P} -sn G_iG_j and $G_j K$ - \mathbb{P} -sn G_iG_j for each $i, j \in \{1, 2, ..., n\}$. Then G is Ore dispersive.

Theorem 2. Let $G = G_1G_2...G_n$ be the product of its pairwise permutable nilpotent subgroups G_1 $G_2, ..., G_n$, subgroups G_i K-P-sn G_iG_j and G_j K-P-sn G_iG_j for each $i, j \in \{1, 2, ..., n\}$. Then G is \overline{w} -supersoluble.

Recall [2] a generalized commutant of a group G is called the smallest normal subgroup N of G such that G/N is a group with abelian Sylow subgroups.

Theorem 3. Let $G = G_1G_2 \cdots G_n$ be the product of its pairwise permutable \overline{w} -supersoluble subgroups G_1, G_2, \ldots, G_n , subgroups G_i K- \mathbb{P} -sn G_iG_j and G_j K- \mathbb{P} -sn G_iG_j for each $i, j \in \{1, 2, \ldots n\}$. If the generalized commutant of group G is nilpotent, then G is \overline{w} -supersoluble.

References

- O.H. Kegel, Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten. Arch. Math. 30(3) (1978) 225-228.
- [2] A.F. Vasil'ev, T.I. Vasil'eva, V.N. Tyutyanov, On the finite groups of supersoluble type. Sib. Math. J. 51(6) (2010) 1004–1012.
- [3] A.F. Vasil'ev, T.I. Vasil'eva, V.N. Tyutyanov, On K-P-subnormal subgroups of finite groups. *Mathematical Notes.* 95(4) (2014) 517-528.