On intersections of nilpotent subgroups in finite groups with the socle isomorphic to $\Omega_8^+(2)$

Victor Zenkov

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia Ural Federal University, Yekaterinburg, Russia

Let G is a finite group with the socle Soc(G) isomorphic to $\Omega_8^+(2)$. Then (see [1]) $Out(\Omega_8^+(2)) \cong \Sigma_3$ and Soc(G) contains a parabolic subgroup P such that P is normalized by an involution τ which induces the graph automorphism on Soc(G) and Levi subgroup of P is isomorphic to $L_3(2)$.

For subgroups A and B of G, denote by $M_G(A, B)$ the set of minimal under the inclusion intersections $A \cap B^g$ where $g \in G$ and by $m_G(A, B)$ the set of minimal under the order elements from $M_G(A, B)$. Set $Min_G(A, B) = \langle M_G(A, B) \rangle$ and $min_G(A, B) = \langle m_G(A, B) \rangle$.

The following two theorems are proved.

Theorem 1. Let G be a finite group with $Soc(G) \cong \Omega_8^+(2)$ and $S \in Syl_2(G)$. If $min_G(S,S) \neq 1$ then $G = Soc(G)\langle \tau \rangle$ and $min_G(S,S) = O_2(P)\langle \tau \rangle$.

Theorem 2. Let G be a finite group with $Soc(G) \cong \Omega_8^+(2)$, $S \in Syl_2(G)$, A and B be nilpotent subgroups of G. Then the following conditions are equivalent:

(1) $A \cap B^g \neq 1$ for any $g \in G$;

(2) $min_G(A, B) \neq 1;$

(3) $Min_G(A, B) \neq 1;$

(4) $G = Soc(G)\langle \tau \rangle$, A and B are conjugated to some subgroups A^g and B^h of S such that $A^g \cap B^h \ge min_G(S,S)$.

This work was supported by Russian Science Foundation, project no. 15-11-10025.

References

 J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson. Atlas of finite groups. Clarendon Press: Oxford, 1985.