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Let G is a finite group with the socle Soc(G) isomorphic to QF (2). Then (see [1]) Out(Qg (2)) = 3
and Soc(G) contains a parabolic subgroup P such that P is normalized by an involution 7 which induces
the graph automorpihism on Soc(G) and Levi subgroup of P is isomorphic to L3(2).

For subgroups A and B of G, denote by M (A, B) the set of minimal under the inclusion intersections
AN BY where g € G and by mg(A, B) the set of minimal under the order elements from Mq(A, B). Set
Ming(A, B) = (Mg(A, B)) and ming(A, B) = (mg(A4, B)).

The following two theorems are proved.

Theorem 1. Let G be a finite group with Soc(G) = Qf (2) and S € Syla2(G). If ming(S, S) # 1 then
G = Soc(G)(r) and ming(S,S) = Oz(P)(7).

Theorem 2. Let G be a finite group with Soc(G) = Qf (2), S € Syl2(G), A and B be nilpotent
subgroups of G. Then the following conditions are equivalent:

(1) ANBY #1 for any g € G;

(2) ming(A, B) £ 1;

(3) Ming(A,B) #1;

(4) G = Soc(G)(7), A and B are conjugated to some subgroups A9 and B" of S such that AN B" >
ming (S, S).
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