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General Information Groups and Graphs, Algorithms and Automata

General Information
The International Conference and PhD Summer School “Groups and Graphs, Algorithms and Automata”
is organized by the N.N. Krasovskii Institute of Mathematics and Mechanics of UB RAS, Ural Federal
University named after the first President of Russia B.N. Yeltsin and ООО “Адаптивные решения”
(Adaptive Solutions Ltd.).

The conference is dedicated to Professor Vyacheslav A. Belonogov in the occasion of his 80th birthday
and to Professor Vitaly A. Baransky in the occasion of his 70th birthday.

The conference aims to cover all branches of group theory, graph theory, automata and formal language
theory and algorithm theory. The scientific program consists of Minicourses, Plenary and Contributed
talks. The official language of the conference is English.

The Conference venue is recreation area Ivolga near Yekaterinburg, August, 9-15, 2015.

Scientific committee:
Alexander Makhnev (chair), Alexander Gavrilyuk, Lev Kazarin, Anatoly Kondrat’ev, Elena
Konstantinova, Natalia Maslova, Viktor Mazurov, Dmitrii Paduchikh, Danila Revin, Vladimir Trofimov,
Andrey Vasil’ev, Mikhail Volkov, Viktor Zenkov.

Organizing committee:
Vladislav Kabanov (co-chairman), Mikhail Volkov (co-chairman), Ivan Belousov, Konstantin Efimov,
Alexander Gavrilyuk, Sergey Goryainov, Ekaterina Khomyakova, Igor Khramtsov, Valeria Kolpakova,
Anton Konygin, Natalia Maslova (secretary), Oleg Rasin, Igor Vakula, Boris Vernikov, Marianna
Zinov’eva.

Steering committee:
Sergey Goryainov, Elena Konstantinova, Klavdija Kutnar, Alexander Makhnev, Natalia Maslova,
Alexander Mednykh.

Partners:
Sobolev Institute of Mathematics
Novosibirsk State University
University of Primorska
Slovenian Research Agency

Website:
g2a2.imm.uran.ru
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http://g2a2.imm.uran.ru


Groups and Graphs, Algorithms and Automata Program

Conference Program

August 9, 2015

09:00 - 12:00 Registration: Ural Federal University named after the first President of Russia
B.N. Yeltsin: Hall, 51, Lenina Pr., Yekaterinburg

12:30 - 13:30 Getting Ivolga
14:00 - 15:00 Lunch
15:30 - 15:45 Official Welcome
Plenary Talks
Special session dedicated to Professor V. Baransky in the occasion of his 70th birthday
15:45 - 16:00 Greeting to Professor V. Baransky
16:00 - 16:50 V. Baransky (join work with T. Nadymova and T. Senchonok): The lattice of graphical

partitions
16:50 - 17:40 A. Makhnev: Koolen problem for t = 5
18:00 - 19:00 Football
19:00 - 20:00 Dinner

August 10, 2015

08:30 - 09:45 Breakfast
Plenary Talks
10:00 - 10:50 T. Ito: Finite dimensional irreducible representations of the TD-algebra
10:50 - 11:40 J. Koolen (join work with Z. Qiao, A. Gavrilyuk and J. Park): On recent progress of

2-walk-regular graphs
11:40 - 12:10 Coffee break
12:10 - 13:00 V. Kabanov (join work with L. Shalaginov): On some classes of Deza graphs
13:00 - 14:00 Lunch
Minicourses
14:30 - 15:20 D. Marušič: Minicourse I, Lecture 1
15:20 - 16:10 K. Kutnar: Minicourse I, Lecture 2
16:10 - 16:40 Coffee break
Contributed Talks
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving / Sports

Yekaterinburg, Russia 5 August, 9-15, 2015



Program Groups and Graphs, Algorithms and Automata

August 11, 2015

08:30 - 09:45 Breakfast
Plenary Talks and Minicourses
10:00 - 10:50 S. Goryainov (join work with A. Gavrilyuk and L. Shalaginov): On Deza circulants
10:50 - 11:40 E. Vdovin: Minicourse IV, Lecture 1
11:40 - 12:10 Coffee break
12:10 - 13:00 T. Pisanski: Minicourse II, Lecture 1
13:00 - 14:00 Lunch
Minicourses
14:30 - 15:20 D. Marušič: Minicourse I, Lecture 3
15:20 - 16:10 K. Kutnar: Minicourse I, Lecture 4
16:10 - 16:40 Coffee break
Contributed Talks
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving / Sports

August 12, 2015

08:30 - 09:45 Breakfast
Plenary Talks
Special session dedicated to Professor V. Belonogov in the occasion of his 80th birthday
10:00 - 10:15 Greeting to Professor V. Belonogov
10:15 - 11:05 V. Belonogov: Character theory and abstract structure of finite groups
11:05 - 11:55 L. Kazarin: Group factorizations, graphs and related topics
11:55 - 12:25 Coffee break
12:25 - 13:15 B. Amberg: Products of groups which contain abelian subgroups of finite index
13:15 - 14:15 Lunch
Plenary Talks
14:30 - 15:20 A. Kondrat’ev: On prime graphs of finite groups
15:20 - 16:10 N. Maslova (join work with A. Kondrat’ev and D. Revin): On the pronormality of

subgroups of odd indices in finite simple groups
16:10 - 16:40 Coffee break
16:40 - 17:30 V. Levchuk (join work with O. Kravtsova): Problems on structure of finite quasifields

and projective translation planes
17:45 - 18:00 Conference Photo
19:00 Conference Dinner

August, 9-15, 2015 6 Yekaterinburg, Russia



Groups and Graphs, Algorithms and Automata Program

August 13, 2015

08:30 - 09:45 Breakfast
Minicourses
10:00 - 10:50 M. Volkov: Minicourse V, Lecture 1
10:50 - 11:40 E. Vdovin: Minicourse IV, Lecture 2
11:40 - 12:10 Coffee break
12:10 - 13:00 T. Pisanski: Minicourse II, Lecture 2
13:00 - 14:00 Lunch
Minicourses
14:30 - 15:20 D. Marušič: Minicourse I, Lecture 5
15:20 - 16:10 K. Kutnar: Minicourse I, Lecture 6
16:10 - 16:40 Coffee break
Contributed Talks
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving / Sports

August 14, 2015

08:30 - 09:45 Breakfast
Minicourses
10:00 - 10:50 M. Volkov: Minicourse V, Lecture 2
10:50 - 11:40 N. Timofeeva: Minicourse III, Lecture 1
11:40 - 12:10 Coffee break
12:10 - 13:00 T. Pisanski: Minicourse II, Lecture 3
13:00 - 14:00 Lunch
Minicourses
14:30 - 15:20 D. Marušič: Minicourse I, Lecture 7
15:20 - 16:10 K. Kutnar: Minicourse I, Lecture 8
16:10 - 16:40 Coffee break
Contributed Talks
19:00 - 20:00 Dinner
20:00 - 22:00 Problem solving / Sports

August 15, 2015

08:30 - 09:45 Breakfast
Minicourses
10:00 - 10:50 M. Volkov: Minicourse V, Lecture 3
10:50 - 11:40 N. Timofeeva: Minicourse III, Lecture 2
11:40 - 12:10 Coffee break
12:10 - 13:00 T. Pisanski: Minicourse II, Lecture 4
13:00 - 14:00 Lunch
Plenary Talks
14:30 - 15:20 V. Trofimov: Some problems concerning vertex-symmetric graphs
15:30 - 15:50 Closing
17:00 Leaving Ivolga

Yekaterinburg, Russia 7 August, 9-15, 2015



Abstraсts Groups and Graphs, Algorithms and Automata

Abstracts

Abstracts of Minicourses, Plenary and Contributed talks are listed
alphabetically with respect to Presenting Author

August, 9-15, 2015 8 Yekaterinburg, Russia



Groups and Graphs, Algorithms and Automata Abstraсts – Minicourses

Minicourses
Minicourse I: Graphs and their automorphism groups

Lecturers:
Klavdija Kutnar

University of Primorska, Koper, Slovenia

Dragan Marušič
University of Primorska, Koper, Slovenia

In mathematics we usually tend to study structures that admit a certain degree of symmetry. In
graphs the degree of symmetry is given by the automorphism group which is the group of all adjacency
preserving permutations of its vertex set.

In this course we introduce various families of graphs with a rather large degree of symmetry such as
vertex-transitive graphs, edge-transitive graphs and arc-transitive graphs. We review some of the methods
for constructing such graphs and present some results from the rich theory that has developed in the last
few decades. We also present some open problems in the area.

The course contains 8 lectures.

This course is organized in the frame of the international cooperation between Slovenia and Russia
in 2014-2015.

Yekaterinburg, Russia 9 August, 9-15, 2015



Abstraсts – Minicourses Groups and Graphs, Algorithms and Automata

Minicourse II: Symmetries in Graphs with Python and Sage

Lecturer:
Tomaž Pisanski

University of Ljubljana, Ljubljana, Slovenia
University of Primorska, Koper, Slovenia

In this course we will learn basics of Python and Sage that will enable participants to start exploring
non-trivial questions about symmetries of graphs. We will construct some bi-Cayley graphs, such as
Haar graphs, rose-window graphs, I-graphs and their generalizations. We will also analyze some existing
censuses of graphs and related structures, such as maps and polytopes.

Each participant is expected to posses basic skills of computer programming and have his or her own
lap-top available.

Each registered participant will receive a handout, including relevant references and tutorials, prior
to the beginning of this minicourse.

A list of questions, ranging from simple exercises that will enable participants to recall the learned
skills, to non-trivial mathematical problems will be distributed.

The course contains 4 lectures.

This course is organized in the frame of the international cooperation between Slovenia and Russia
in 2014-2015.

August, 9-15, 2015 10 Yekaterinburg, Russia



Groups and Graphs, Algorithms and Automata Abstraсts – Minicourses

Minicourse III: Monstrous Moonshine

Lecturer:
Nadezhda Timofeeva

Yaroslavl P. Demidov State University, Yaroslavl, Russia

A starting point was the paper of 1979 by J.H. Conway and S.P. Norton entitled “Monstrous
Moonshine”. It comprises of several seeming-coincidences relating the Monster group (in that time its
existence was only conjectured) to modular forms. Since this original paper many more connections
of modular forms to sporadic simple groups were discovered. They all are collectively referred to as
Moonshine.

In 1998 R. Borcherds won the Fields medal in part for his work where he proved the original conjectures
of J.H. Conway and S.P. Norton. The proof opened connections of the representation theory and the theory
of modular forms to mathematical physics.

In my lectures I will try to explain the basic notions and to describe the key moments of the Moonshine
in its classical version. If the time permit, I will sketch some generalisations and say several words about
open problems.

The course contains 2 lectures.

Yekaterinburg, Russia 11 August, 9-15, 2015



Abstraсts – Minicourses Groups and Graphs, Algorithms and Automata

Minicourse IV: Existence and conjugacy of Hall subgroups.
Contemporary progress and open problems

Lecturer:
Evgeny Vdovin

Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia

In the lectures we plan to discuss general methods for answering to the following problems: whether
given finite group possesses a π-Hall subgroup for a set of primes π, and how many classes of conjugate
π-Hall subgroups the group has.

One of the main technical tool is the notion of a group of induced automorphisms and the inclusion
to the wreath product with this group (see [1], and theorem 3 from this paper). We recommend the
attendants to read paper [2] also (at least the main part without Appendix).

The course contains 2 lectures.

Reference

[1] E. P. Vdovin, Groups of induced automorphisms and their application to studying the existence problem for
Hall subgroups // Algebra and Logic. 2014. Vol. 53, no. 5. P. 418–421. Doi:10.1007/s10469-014-9301-x.

[2] E. P. Vdovin, D. O. Revin, Theorems of Sylow type // Russian Math. Surveys. 2011. Vol. 66, no. 5. P. 829–
870.

August, 9-15, 2015 12 Yekaterinburg, Russia



Groups and Graphs, Algorithms and Automata Abstraсts – Minicourses

Minicourse V: Synchronizing finite automata:
a problem everyone can understand but nobody can solve (so far)

Lecturer:
Mikhail Volkov

Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russia

Most current mathematical research, since the 60s, is devoted to fancy situations: it brings solutions
which nobody understands to questions nobody asked (quoted from Bernard Beauzamy in [1]). This
provocative claim is certainly exaggerated but it does reflect a really serious problem: a communication
barrier between mathematics (and exact science in general) and human common sense. The barrier results
in a paradox: while the achievements of modern mathematics are widely used in many crucial aspects of
everyday life, people tend to believe that today mathematicians do “abstract nonsense” of no use at all.
In most cases it is indeed very difficult to explain to a non-mathematician what mathematicians work
with and how their results can be applied in practice. Fortunately, there are some lucky exceptions, and
one of them has been chosen as the present course’s topic. It is devoted to a mathematical problem that
was frequently asked by both theoreticians and practitioners in many areas of science and engineering.
The problem, usually referred to as the synchronization problem, can be roughly described as the task of
determining the simplest way to restore control over a device whose current state is not known - think
of a satellite which loops around the Moon and cannot be controlled from the Earth while “behind” the
Moon. While easy to understand and practically important, the synchronization problem turns out to
be surprisingly hard to solve even for finite automata that constitute the simplest mathematical model
of real-world devices. This combination of transparency, usefulness and unexpected hardness should,
hopefully, make the course interesting for a wide audience.

Among other things, the course will present a recent major advance in the theory of synchronizing finite
automata: Avraam Trahtman’s proof of the so-called Road Coloring Conjecture by Adler, Goodwyn, and
Weiss. The conjecture that admits a formulation in terms of recreational mathematics arose in symbolic
dynamics and has important implications in coding theory. The proof is elementary in its essence but
clever and enjoyable.

The course contains 3 lectures.

Reference

[1] B. Beauzamy, Real life mathematics // Irish Math. Soc. Bull. 2002. Vol. 48. P. 43–46.

Yekaterinburg, Russia 13 August, 9-15, 2015



Abstraсts – Plenary Talks Groups and Graphs, Algorithms and Automata

Plenary Talks
On products of groups which contain almost abelian subgroups

Bernhard Amberg
Johannes Gutenberg-Universität Mainz, Mainz, Germany

Let the group G = AB be the product of two subgroups A and B, i. e. G = {ab | a ∈ A, b ∈ B}.
If A and B are abelian, then G is metabelian by a well-known theorem of N. Itô (see for instance [1]).
This raises the question whether every group G = AB with abelian-by-finite subgroups A and B is
metabelian-by-finite ([1], Question 3), or at least soluble-by-finite. However, this seemingly simple
question is very difficult to attack. A positive answer was previously given under additional requirements,
for instance for linear groups G by Ya. Sysak and for residually finite groups G by J. Wilson, see [1].
Furthermore, N. S. Chernikov proved that every group G = AB with central-by-finite subgroups A and
B is soluble-by-finite (see [1]).

It is natural first to consider groups G = AB where the two factors A and B have abelian
subgroups with small index, in particular less or equal 2. In the talk some results obtained recently by
Lev Kazarin, Yaroslav Sysak and myself in the case that enough involutions are present will be presented.

For example the following holds.

Theorem. Let the group G = AB be the product of two subgroups A and B each of which is either
abelian or generalized dihedral. Then G is soluble.

Here a group A is called generalized dihedral if it contains an abelian subgroup X of index 2 and an
involution inverting every element of X. Clearly A is a semidirect product A = Xo < a > of the abelian
group X with a group < a > of order 2 such that xa = x−1 for every x ∈ X. Obviously dihedral groups
and locally dihedral groups are also generalized dihedral.

Reference

[1] B. Amberg, S. Franciosi, F. de Giovanni, Products of groups. Oxford: Clarendon Press, 1992.

August, 9-15, 2015 14 Yekaterinburg, Russia



Groups and Graphs, Algorithms and Automata Abstraсts – Plenary Talks

The lattice of graphical partitions

Vitaly Baransky
Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russia

This is joint work with Tatyana Nadymova and Tatiana Senchonok

A partition is a sequence of nonnegative integers (the parts) in nonincreasing order (we will disregard
trailing zeroes).

A graphical partition is a partition whose parts can be interpreted as the degrees of the vertices of
some simple (undirected) graph.

We show that, for a given integer n,
– all graphical partitions,
– all graphical partitions of lengths less than or equal to n,
– all graphical partitions of length n
form the lattices GPL, GPL(n), GPLzf(n) ordered by dominance.
We show that the lattice GPL is a lower subsemilattice of the lattice NPL of all partitions ordered

by dominance, but GPL is not a sublattice of the lattice NPL.
We establish that the set of all graphical partitions of 2m is an order ideal of the lattice of all partitions

of 2m. We find, for a given integer m, all maximal graphical partitions in the lattice of all partitions of
2m.

We also present a new algorithm, which, for a given integer n, generates all graphical partitions of
lengths less than or equal to n. Our algorithm can generate graphical partitions without generating any
nongraphical partitions.

Reference

[1] T. Brylawski, The lattice of integer partitions // Discrete Math. 1973. Vol. 6, no. 3. P. 201–219.

[2] G. Sierksma, H. Hoogeveen, Seven criteria for integer sequences being graphic // J. Graph Theory. 1991.
Vol. 15, no. 2. P. 223–231.

[3] A. Kohnert, Dominance order and graphical partitions // The Electron. J. Comb. 2004. Vol. 11, no. 4.
P. 1–17.

[4] J.M. Burns, The number of degree sequences of graphs // MIT. 2007. P. 1–60.

[5] V.A. Baransky, T.A. Koroleva, The lattice of partitions of an integer // Doklady Math. 2008. Vol. 77, no. 1.
P. 72–75.

[6] A. Iványi, L. Lucz, G. Gombos, T. Matuszka, Parallel enumeration of degree sequences of simple graphs II
// Acta Univ. Sapientiae, Informatica. 2013. Vol. 5, no. 2. P. 245–270.

Yekaterinburg, Russia 15 August, 9-15, 2015



Abstraсts – Plenary Talks Groups and Graphs, Algorithms and Automata

Character theory and abstract structure of finite groups

Vyacheslav Belonogov
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

This talk is a short survey of some results from the character theory of finite groups which are used
for the study of the abstract structure of groups. In particular, some results of the author are discussed.
We consider the following themes.

1. Some notation and elementary definitions.
2. Character table of a group.
3. Interactions and D-blocks.
4. Zeroes in the character table.
5. Characterization of groups by active fragments of the character table.
6. Semiproportional characters.

1. Further, G is a finite group and C is the field of all complex numbers. If g ∈ G then CG(g) is
the centralizer of g in G, gG := {x−1gx | x ∈ G} is the conjugacy class of G containing g, and k(G) is
the number of conjugacy classes of G. We remember concepts: a representation of G over a field F ; the
degree of a representation; the character of a representation; reducible and irreducible representations;
the kernel of a representation. The writing D ⊆ G denotes that D is a normal subset of G (i. e. the union
of some conjugacy classes of G). Majority of necessary to us concepts and results may be find in [1–3].

2. A character (irreducible character) of G is a character of some representation (respectively,
irreducible representation) of G over C. Irr(G) denotes the set of all irreducible characters of G. Then
|Irr(G)| = k(G). If Irr(G) = {χ1, χ2, . . . , χk} and Cl(G) = {g1

G, g2
G, . . . , gk

G}, where k = k(G), then
(k × k-matrix) X(G) = (χi(gj)) (k × k-matrix) is a character table of G (X is the Greek Chi). The
orthogonality relations in X(G) are significant.

Problem 1. To investigate the interdependency of the properties of the character table of a group and
the abstract structure of this group.

2a. From G to X(G): For any given group G may be constructed X(G) (see [2, theorem 10]).
2b. From X(G) to G: The size of the table X(G) is very small with respect to |G| (examples are

given) in order that determinate G (up to isomorphism) by X(G). X(D8) = X(Q8) almost D8 � Q8.
Nevertheless, it is possible recognize many properties of G from X(G). There exist some groups that may
be completely reconstructed (up to isomorphism) by their character tables. In particular, this property
have groups Sn [4] and An [5].

3. We remind the concepts of interaction and D-block (where D ⊆ G) introduced in [6] (see also [3,
chapter 3, sect. A]) and discuss some appropriate results of the author (in particular, [10]). The concept
of D-block generalizes the classical concept of p-block (where p is a prime number): If D is the set Gp′
of all p′-elements of G, then the concept of D-block coincides with the concept of p-block. We discuss an
effective method (from [7]) for calculating p-blocks of finite groups which is based on using of D-blocks
for some p-sections D of a given group.

4. For applications of the character theory to study the abstract structure of groups, results on
existence and disposition of zeros in X(G) are important. Here we give some examples of such results. In
particular, one of such results (see [8]) has Corollary: if X(G) has a zero submatrix Os×t then s + t ≤
k(G)− 1. A zero submatrix Os×t of X(G) with s+ t = k(G)− 1 is called the extremal zero fragment of
X(G). The following problem is not solved till now.

Problem 2. To investigate groups G such that X(G) has an extremal zero fragment.

5. Let D ⊆ G, Φ ⊆ Irr(G) and X(Φ, D) is the submatrix of X(G) lying on intersections of rows
corresponding to characters in Φ and columns corresponding to classes in D. If D is interact with Φ then
the matrix X(Φ, D) is called an active fragment of X(G) or an active fragment of G. We shall discuss some
established by the author characterizations of finite groups (in particular, J1 [9], PSL2(q) and Sz(q)) by
their active fragments.

August, 9-15, 2015 16 Yekaterinburg, Russia



Groups and Graphs, Algorithms and Automata Abstraсts – Plenary Talks

6. Functions ϕ and ψ from a setM in the field C is called semiproportional, if they are not proportional
and there is a subset H in M such that ϕ|M is proportional to ψ|M and ϕ|S\M is proportional to ψ|S\M
(ϕ|M denotes the restriction of ϕ to M). In particular, we may speak on semiproportional characters of
a group, on semiproportional rows and on semiproportional column of X(G). For brevity, two conjugacy
classes of G we shall call semiproportional if corresponding to them columns ofX(G) are semiproportional.
We discuss (see, in particular, [11–15]) the following conjectures.

Conjecture 1 (Semiproportional Characters Conjecture). If ϕ and ψ are semiproportional irreducible
characters of a finite group then ϕ(1) = ψ(1).

Conjecture 2 (Semiproportional Classes Conjecture). If gG and hG are semiproportional conjugacy
classes of a finite group G then the cardinality of one from this classes divides the cardinality of other.

We discuss also some results connected with following theorem (the concluding result is obtained
in [13]).

Theorem. Finite alternating groups have no semiproportional irreducible characters.

Reference

[1] I. M. Isaacs, Character theory of finite groups. N. Y.: Acad. Press. 1978.

[2] V. A. Belonogov, A. N. Fomin, Matrix reprezentatios in the theory of finite groups. M.: Nauka. 1976. (in
Russian)

[3] V. A. Belonogov, Reprezentatios and characters in the theory of finite groups. Sverdlovsk: Ural Branch of
AS USSR, 1990. (in Russian).

[4] H. Nagao, On the groups with the same table of characters as symmetric groups // J. Inst. Polytech. Osaka
City Univ. Ser. A . 1957. Vol. 8, no. 1. P. 1–8.

[5] T. Oyama, On the groups with the same table of characters as alternating groups // Osaka J. Math. 1964.
Vol. 1, no. 1. P. 91–101.

[6] V. A. Belonogov, D-blocks of characters of finite group // Amer. Math. Soc. Transl.(2). 1989. Vol. 143.
P. 103–128.

[7] V. A. Belonogov, A new method for calculating p-blocks // Contemporary Math. 1995. Vol. 184, P. 49–58.

[8] V. A. Belonogov, A property of the character table for a finite group // Algebra and Logic. 2000. Vol. 39,
no. 3. P. 155–159.

[9] V. A. Belonogov, A characterization of the Janko group J1 by active fragment of its character table // Publ.
Math. Debrecen. 2001. Vol. 59, no. 1-2. P. 195–202.

[10] V. A. Belonogov, Finite group with D-block of cardinality 3 // J. Math. Scien. 2010. Vol. 167, no. 6. P. 741–
748.

[11] V. A. Belonogov, Small interactions in the groups SL3(q), SU3(q), PSL3(q), and PSU3(q) // Trudy Inst.
Mat. Mekh. UrO RAN. 1998. Vol. 5. P. 3–27 (in Russian).

[12] V. A. Belonogov, On the semiproportional character conjecture // Sib. Math. J. 2005. Vol. 46, no. 2. P. 233–
245.

[13] V. A. Belonogov, On irreducible character of the groups Sn that are semiproportional on An or Sn \An. VII
// Trudy Inst. Mat. Mekh. UrO RAN. 2011. Vol. 17, no. 1. P. 3–16 (in Russian).

[14] V. A. Belonogov, On semiproportional character conjecture in groups Sp4(q) // Proc. Steklov Inst. Math.
2013. Vol. , Suppl. 1. P. S1–S18.

[15] V. A. Belonogov, On semiproportional columns of character table of groups Sp4(q) and PSp4(q) for odd q
// Trudy Inst. Mat. Mekh. UrO RAN. 2015. Vol 21, no. 3, to appear (in Russian).
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On Deza circulants

Sergey Goryainov
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

Chelyabinsk State University, Chelyabinsk, Russia

This is joint work with Alexander Gavrilyuk and Leonid Shalaginov

A connected regular graph Γ is a Deza graph, if there exist integers a and b such that any two distinct
vertices of Γ have either a or b common neighbours. A circulant is a graph that admits a cyclic group of
automorphisms, i.e., it is a Cayley graph of a cyclic group.

In this talk, we report on our attempt (in progress) to classify circulants that are Deza graphs.
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Finite dimensional irreducible representations of the TD-algebra

Tatsuro Ito
Anhui University, Hefei, China

In this talk, I will determine finite-dimensional irreducible representations of the tridiagonal algebra
(TD-algebra).

The TD-algebra has three types: the type I includes the positive part of the quantum affine algebra
Uq(ŝl2) and the q-Onsager algebra; the type II includes the Onsager algebra and its generalization; type
III is related to the quantum affine algebra Uq(ŝl2) at q = −1. Drinfel’d polynomials play the key role in
the determination of such irreducible representations.

As an application, we classify tridiagaonal pairs by explicitly constructing them as certain sort of
tensor products of Leonard pairs, which will in turn provide a key tool for the classification of (P and
Q)-polynomial association schemes through the investigation of their Terwilliger algebras.
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On some classes of Deza graphs

Vladislav Kabanov
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

Ural Federal University, Yekaterinburg, Russia

This is joint work with Leonid Shalaginov

We consider only undirected graphs, without loops and multiple edges. Let Γ be a graph. We will
consider the following generalization of strongly regular graphs. Let n, k, b and a be integers such that
0 ≤ a ≤ b ≤ k < n. A graph Γ is a Deza graph with parameters (n, k, b, a) if

(i) Γ has exactly n vertices;
(ii) Γ(u, v) has exactly k vertices if u = v, takes on one of two values b and a otherwise.
The only difference between a strongly regular graph and a Deza graph is that the size of Γ (u,v),

does not necessarily depend on adjacencies. These graphs were introduced in the article by Antoine and
Michel Deza [1]. So we call these graphs as Deza graphs. A strictly Deza graph is a Deza graph which is
not strongly regular and has diameter 2.

Significant results for a strictly Deza graphs have got by M. Erickson, S. Fernando, W. H. Haemers,
W. H. Hardy, J. Hemmiter [2].

It is easy to see the complement of a strictly Deza graph is not necessary a Deza graph and not always
has the diameter 2.

We consider some class of strictly Deza graphs according to the properties of their complement graphs.

Reference

[1] A. Deza, M. Deza, The ridge graph of the metric polytope and some relatives // Polytopes: Abstract, convex
and computational, ed. by T. Bisztriczky [et al.]. NATO ASI Series, Kluwer Academic, 1994. P. 359–372.

[2] M. Erickson, S. Fernando, W. H. Haemers, W. H. Hardy, J. Hemmeter, Deza graphs: A generalization of
strongly regular graph // J. Combin. Designs. 1999. Vol. 7, no. 6. P. 395–405.
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Group factorizations, graphs and related topics

Lev Kazarin
Yaroslavl P. Demidov State University, Yaroslavl, Russia

We study factorizations of groups in the form G = AB with certain conditions on the factors A and
B. The structure of the corresponding soluble graph gives an information on the composition factors
of the group (see [1]). This approach is used also for the investigation of classes of finite groups with
restriction on the normalizers of Sylow subgroups in [2]. It turns out that the Sylow graph in this paper
is a subgraph of the soluble graph. Some results on the characters of groups are discussed.

Reference

[1] B. Amberg, L. Kazarin, On the soluble graph of a finite simple group // Commun. Algebra. 2013. Vol. 41.
P. 2297-2309.

[2] L. Kazarin, A. Martinez-Pastor, M.D. Perez-Ramos, On the Sylow normalizers finite groups // J. Algebra
Appl. 2014. Vol. 13, no. 3. 1350116 (20 pages).
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On prime graphs of finite groups

Anatoly Kondrat’ev
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russia

The prime (or Gruenberg-Kegel) graph of a finite group G is an undirected simple graph whose vertex
set is the set π(G) of all prime divisors of the order of G and two vertices p and q are adjacent if and only
if there exists an element of order pq in G. The prime graph of a finite group is its important arithmetical
invariant, having numerous applications.

In this talk, we discuss some results on finite groups whose prime graphs have given properties.
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On recent progress of 2-walk-regular graphs

Jack Koolen
University of Science and Technology of China, Hefei, China

This is based on joint work with Zhi Qiao, Alexander Gavrilyuk and Jongyook Park

t-Walk-regular graphs are a generalisation of distance-regular graphs. Many results for distance-regular
graphs can be extended to 2-walk-regular graphs.

In this talk I will discuss some recent progress on 2-walk-regular graphs.
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Problems on structure of finite quasifields and projective translation planes

Vladimir Levchuk
Siberian Federal University, Krasnoyarsk, Russia

This is joint work with Olga Kravtsova

Closely related problems of the construction and classification of different classes of finite non-
Desargues translation planes and quasifields are being studied since in first of the last century; researches
use computer calculations from 1950-th.

We introduce the orders of loop elements as a generalization of orders of group elements and similarly
left and right orders. The set of orders (or left orders) of all elements of a loop is called a spectrum
(resp., a left spectrum). For any finite proper quasifield and semifield S we study maximal subfields,
their possible orders, automorphisms, spectrums of the loop S∗ = (S \ {0}, ◦) and the hypothesis: for any
finite semifield S the loop S∗ is one-generated.
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Koolen problem for t=5

Alexander Makhnev
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russia

At present the Koolen problem is solved for t at most 4.
We have reduction Koolen problem for t = 5 to exceptional graphs and obtain the list of parameters

of exceptional graphs with the second eigenvalue 5.
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On the pronormality of subgroups of odd indices in finite simple groups

Natalia Maslova
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russia

This is joint work with Anatoly Kondrat’ev and Danila Revin

A subgroup H of a group G is said to be pronormal in G if H and Hg are conjugate in 〈H,Hg〉 for
every g ∈ G.

In [1], the following conjecture was formulated.

Conjecture. All subgroups of odd indices are pronormal in all finite simple groups.

In [2], the following theorem is proved.

Theorem. All subgroups of odd indices are pronormal in the following finite simple groups:
(1) An, where n ≥ 5;
(2) sporadic groups;
(3) groups of Lie type over fields of characteristic 2;
(4) L2n(q);
(5) U2n(q);
(6) S2n(q), where q 6≡ ±3 (mod 8);
(7) On(q);
(8) exceptional groups of Lie type not isomorphic to E6(q) or 2E6(q).

In this talk, we construct a counterexample to mentioned conjecture and discuss (in progress) a
classification of finite simple groups in which all subgroups of odd indices are pronormal.

The work is supported by Russian Science Foundation (project 14-21-00065). The speaker is a winner
of the competition of the Dmitry Zimin Foundation “Dynasty” for support of young mathematicians in
2013 year.

Reference

[1] E. P. Vdovin, D. O. Revin, Pronormality of Hall subgroups in finite simple groups // Sib. Math. J. 2012.
Vol. 53, no. 3. P. 419–430.

[2] A. S. Kondrat’ev, N. V. Maslova, D. O. Revin, On the pronormality of subgroups of odd indices in finite
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Some problems concerning vertex-symmetric graphs

Vladimir Trofimov
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

Ural Federal University, Ekaterinburg, Russia

Several problems on (mostly infinite, locally finite) vertex-symmetric graphs are formulated and
discussed. By the way it is discussed what the investigation of Cayley graphs of groups gives for the
investigation of general vertex-symmetric graphs.
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Sub-Riemannian geodesic flow for Goursat distribution

Sergey Agapov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

The following optimal control problem is considered:

q̇ = u1f1(q) + u2f2(q), q = (x1, x2, ..., xn) ∈ Rn, u ∈ R2, (1)

where
f1(q) = (1, 0,−x2, . . . ,−xn−1),

f2(q) = (0, 1, 0, . . . , 0)

are vector fields defining the distribution of two-dimensional planes in Rn (the so-called Goursat
distribution), u is a control parameter. Boundary conditions: q(0) = q0, q(t1) = q1. The functional
to be minimized is as follows:

L =

∫ t1

0

√
u2

1 + u2
2dt.

The system (1) is completely controllable and optimal trajectories exist (see [1]). Via Pontryagin’s
maximum principle (see [1]) we obtain the corresponding Hamiltonian system which is proved to be
completely integrable (in the Liouville sense), all the first integrals being found explicitly. The level
surfaces of these integrals are described. Finally, we study motion-planning problem related to the
Goursat distribution. Namely, we search for the trajectories which are periodic in some coordinates.
They are related to the motion along the "prohibited" directions. This problem plays an important role
in applications (for example, in robotics, see [2], [3]).

Reference

[1] A. A. Agrachev, Yu. L. Sachkov, Geometrical control theory. M.:FizMatLit, 2005 (in Russian).

[2] J. P. Laumond, Robot motion planning and control. Berlin, Heidelberg: Springer, 1998.

[3] N. B. Mel’nikov, Optimality of singular curves in the problem of a car with n trailers // Optimal control
SMNF. 2006. Vol. 19. P. 114–130.
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On some class of Deza graphs without 3-cocliques

Yulia Akhkamova
South Ural State University, Chelyabinsk, Russia

We consider only undirected graphs, without loops and multiple edges. Let Γ be a graph. We will
consider the following generalization of strongly regular graphs. Let n, k, b and a be integers such that
0 ≤ a ≤ b ≤ k < n. A graph Γ is a Deza graph with parameters (n, k, b, a) if

(i) Γ has exactly n vertices;
(ii) Γ(u, v) has exactly k vertices if u = v, takes on one of two values b and a otherwise.
The only difference between a strongly regular graph and a Deza graph is that the size of Γ (u,v),

does not necessarily depend on adjacences. These graphs were introduced in the article by Antoine and
Michel Deza [1]. So we call these graphs as Deza graphs. A strictly Deza graph is a Deza graph which
is not strongly regular and has diameter 2. A coedge regular Deza graph with parameter µ ∈ {a, b} is a
Deza graph in which Γ(u, v) has exactly µ vertices if u 6= v and u and v are non-adjacent.

Significant results for a strictly Deza graphs have got by M. Erickson, S. Fernando, W. H. Haemers,
W. H. Hardy, J. Hemmiter [2].

We consider the class of strictly Deza graphs without 3-cocliques with a small parameter a.

Theorem. Let Γ be a strictly coedge regular Deza graph without 3-cocliques and with parameters
(n, k, b, a), where µ = a ≤ 3. Then Γ has a parameters (10, 5, 4, 2) or (8, 5, 4, 2). In the first case Γ is
isomorphic to 2-clique extension of C5. In the second case Γ is isomorphic to 2-clique extension of C4.

A class of coedge regular Deza graphs with µ = b and without 3-cocliques was investigated by Galina
Ermakova in [3].

Reference
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[2] M. Erickson, S. Fernando, W. H. Haemers, W. H. Hardy, J. Hemmeter, Deza graphs: A generalization of
strongly regular graph // J. Combin. Designs. 1999. Vol. 7, no. 6. P. 395–405.
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On subgraphs of graph of binary relations

Al’ Dzhabri Kh.Sh.
Udmurt State University, Izhevsk, Russia

Any binary relation R ⊆ X2 (where X is arbitrary set) generates on the set X2 characteristic function:
if (x, y) ∈ R, then R (x, y) = 1, otherwise R (x, y) = 0. In terms of characteristic functions on the set of
all binary relations of the set X we introduced the concept of a binary reflexive relation of adjacency [1,2]
and determined the algebraic system consisting of all binary relations of set and of all unordered pairs
various adjacent binary relations. If X is finite set then this algebraic system is the graph (“the graph of
graphs”). We investigated some its subgraphs.

The following proposition hold. Let σ and τ are adjacent relations, then 1) σ is a partial order if and
only if τ is a partial order; 2) σ is a reflexive-transitive relation if and only if τ is a reflexive-transitive
relation; 3) σ is an acyclic relation (acyclic digraph) if and only if τ is a acyclic relation (acyclic digraph).

We investigated some features of the structure of the graph of partial orders, the graph of reflexive-
transitive relations and the graph of acyclic relations.

In particular, if X consists of n elements, and T0(n) is the number of labeled T0-topologies defined on
the set X, then the number of vertices in a graph of partial orders is T0(n), and the number of connected
components is T0(n−1). Similarly in a graph of reflexive-transitive relations the number of connected
components equal

n∑
m=1

S(n,m)T0(m−1),

where S(n,m) is Stirling number of second kind. It is well known (see for example [3]) that the number
of vertices in a graph equal

n∑
m=1

S(n,m)T0(m).

In a graph of acyclic relations the number of connected components equal

∑
p1+...+pk=n

(−1)n−k

k

n!

p1! . . . pk!
2 (n2−p21−...−p

2
k)/2.

According to [4] the number of vertices in a graph equal∑
p1+...+pk=n

(−1)n−k
n!

p1! . . . pk!
2 (n2−p21−...−p

2
k)/2.
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Class Character Rings of groups J1 and O′N

Rifkhat Zh. Aleev
South Ural State University, Chelyabinsk, Russia

Margarita I. Molodorich
South Ural State University, Chelyabinsk, Russia

The class character rings of group has been introduced and studied in [1].
The investigation of class character rings is the important step to the description of central units of

group.
The quite exact information about class character rings has been obtained for all sporadic groups

in [2]. Also there are the descriptions of unit groups of class character rings of all sporadic groups, if the
class character ring is contained in some quadratic field.

Let ζ19 be a primitive 19th root of unity and

C = ζ19 + ζ7
19 + ζ8

19 + ζ11
19 + ζ12

19 + ζ18
19 ,

D = ζ4
19 + ζ6

19 + ζ9
19 + ζ10

19 + ζ13
19 + ζ15

19 .

By [2] the groups Janko J1 und O’Nan O′N have the following class character rings

K1 = Z + 77ZC + 77ZD and K2 = Z + 116963ZC + 116963ZD,

respectively.

Theorem. The unit groups of K1 and K2 are

〈−1〉 × 〈(2 + C)30〉 × 〈(2 +D)30〉,
〈−1〉 × 〈(2 + C)1470〉 × 〈(2 +D)1470〉,

respectively.
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Central Unit Group of Integral Group Ring of GL(2, 4)

Rifkhat Zh. Aleev
South Ural State University, Chelyabinsk, Russia

Alexander P. Mitin
South Ural State University, Chelyabinsk, Russia
Chelyabinsk State University, Chelyabinsk, Russia

Olga V. Mitina
South Ural State University, Chelyabinsk, Russia
Chelyabinsk State University, Chelyabinsk, Russia

The groups GL(2, q) (q > 2) have nontrivial centers. This reason is the source of certain difficulties of
finding central unit groups of integral group ring of those groups. In [1] there is the complete description
of central unit group of integral group ring of GL(2, 5).

Note that GL(2, 4) = Z(GL(2, 4)) × SL(2, 4). So the central unit group U(Z(ZSL(2, 4))) of integral
group ring Z(ZSL(2, 4)) of group SL(2, 4)(∼= A5) is the subgroup of U(Z(ZGL(2, 4))). The central unit
group U(Z(ZA5)) can be found in [2].

Let β be a primitive 15th root of unity. The group GL(2, 4) has the character ξ of degree 3. The
character field of ξ is Q(β + β4). The local central unit uξ(λ) can be determined for every nonzero
λ ∈ Q(β + β4) according to [3].

Theorem. The central unit group U(Z(ZGL(2, 4))) is

〈−1〉 × Z(GL(2, 4))×U(Z(ZSL(2, 4)))× 〈uξ((β + β4)24)〉.
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The Parallelization of Algorithms on The Base of The Conception of Q-determinant

Valentina N. Aleeva
South Ural State University, Chelyabinsk, Russia

We describe the approach to parallelization algorithms based on their representation asQ-determinant.
The proposed approach gives the possibility of the maximal parallelization of every algorithm if it enables
the parallelization.

Let A be an algorithm to solve the algorithmic problem ȳ = F (N,B) where N is a parameter
dimension set of the problem, B is a set of input data, ȳ is a set of output data. Let Q be a basic set
of arithmetic and logical type operations. The expression is called the set of operands of arithmetic or
logical type that use operations from Q. Q-term is the map from the problem dimension to a structured
set of expressions that we need to calculate one of the output variables of the problem. The set of Q-terms
can be unconditional, conditional and conditionally infinite according to the structure of expression set.

Q-determinant is the set of Q-terms that we need to calculate each of the problem output data [1].
Let an algorithm A be in the form of yi = fi(i = 1, . . . ,m) where fi is Q-term to calculate yi, m is the
number of output data. Then we consider that the algorithm A represents in the form of Q-determinant.

We consider the Gauss–Jordan solution of a system of linear equations as an example of representation
of the algorithm in the form of Q-determinant. Let Ax̄ = b̄ be a system of linear equations, where
A = [aij ]ij=1,...,n is a n × n invertible matrix, x̄ = (x1, . . . , xn)T , b̄ = (a1,n+1, . . . , an,n+1)T . At the first
step we suppose that the leading element is the first nonzero element of the first row of the original
matrix, and at k-th step (2 ≤ k ≤ n) we select the first nonzero element of the k-th row that obtained at
(k− 1)-th step. Then the Q-determinant of Gauss–Jordan method consists of n conditional Q-terms and
its representation in the form of Q-determinant has the shape

xj =
{

(u1, w
j
1), . . . , (un!, w

j
n!)
}

(j = 1, . . . , n).

The realization of the algorithm in the form of Q-determinant is called the process of calculating
the Q-terms fi(i = 1, . . . ,m) that are included in the Q-determinant. If the calculation of all Q-terms
fi(i = 1, . . . ,m) is produced at the same time and as rapid as possible, i.e. the operations of the set are
executed as soon as they are ready to perform, in this case we have the most rapid implementation of the
algorithm.

If the algorithm has some representation as flowchart then it can be represent in the form of Q-
determinant [2]. The software system QStudio [3] makes possible to calculate Q-determinant of any
algorithm (if the algorithm has some representation as flowchart), to find the most rapid possible
implementation and to build its execution plan for the parallel system.
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Intersection of conjugated solvable subgroups in symmetric groups

Anton Baykalov
Novosibirsk State University, Novosibirsk, Russia

Assume that a finite group G acts on a set Ω. An element x ∈ Ω is called a G-regular point if
|xG| = |G|, i.e. if the stabilizer of x is trivial. Define the action of the group G on Ωk by the rule

g : (i1, . . . , ik) 7→ (i1g, . . . , ikg).

If G acts faithfully and transitively on Ω, then the minimal number k such that the set Ωk contains a
G-regular point is called the base size of G and is denoted by b(G). For a positive integer m the number of
G-regular orbits on Ωm is denoted by Reg(G,m) (this number equals 0 ifm < b(G)). If H is a subgroup of
G and G acts by the right multiplication on the set Ω of right cosets of H then G/HG acts faithfully and
transitively on the set Ω. (Here HG = ∩g∈GHg.) In this case, we denote b(G/HG) and Reg(G/HG,m)
by bH(G) and RegH(G,m) respectively.

Thus bH(G) is the minimal number k such that there exist elements x1, . . . , xk ∈ G for which

Hx1 ∩ . . . ∩Hxk = HG.

Consider the problem 17.41 from “Kourovka notebook” [1]:
Let H be a solvable subgroup of finite group G and G does not contain nontrivial normal solvable

subgroups. Are there always exist five subgroups conjugated with H such that their intersection is trivial?
The problem is reduced to the case when G is almost simple in [2]. Specifically, it is proved that if for

each almost simple group G and solvable subgroup H of G condition RegH(G, 5) ≥ 5 holds then for each
finite nonsolvable group G and solvable subgroup H of G condition RegH(G, 5) ≥ 5 holds.

We have proved the following theorem.

Theorem 1. Let H be a solvable subgroup of an almost simple group G whose socle is isomorphic to
An, n ≥ 5. Then RegH(G, 5) ≥ 5. In particular bH(G) ≤ 5.
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On Automorphisms of Distance-Regular Graph with Intersection Array {99,84,1;1,12,99}

Ivan Belousov
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

We consider undirected graphs without loops or multiple edges. Given a vertex a in a graph Γ, let
denote the i-neighborhood of a, i.e., the subgraph induced by Γ on the set of all its vertices that are a
distance of i away from a. Let [a] = Γ1(a) and a⊥ = {a} ∪ [a].

If u and w are vertices separated by a distance of i in Γ, then bi(u,w) (ci(u,w)) denotes the number
of vertices in the intersection of Γi+1(u) (Γi−1(u)) with [w]. A graph Γ of diameter d is called a distance-
regular graph with an intersection array {b0, b1, . . . , bd−1; c1, . . . , cd} if the values bi(u,w) and ci(u,w) are
independent of the choice of vertices u and w separated by a distance of i in Γ for any i = 0, ..., d. Let
ai = k − bi − ci. Note that, for a distance-regular graph, b0 is the degree of the graph and c1 = 1. Given
a subset X of automorphisms of Γ, let Fix(X) denote the set of all vertices of Γ that are fixed under
any automorphism from X. Let plij(x, y) denote the number of vertices in the subgraph Γi(x)∩Γj(y) for
vertices x and y separated by a distance of l in Γ. In a distance–regular graph, the numbers plij(x, y) are
independent of the choice of x and y; they are denoted by plij and are known as the intersection numbers
of Γ.

Let αi(g) denote the number of points u ∈ Γ such that d(u, ug) = i for g ∈ Aut(Γ).
Intersection arrays distance-regular graphs, in which neighborhoods of vertices are strongly regular

with parameters (99,14,1,2) were found in [1]: {99, 84, 1; 1, 12, 99}, {99, 84, 1; 1, 14, 99}, {99, 84, 30; 1, 6, 54}.
These abstracts are considered possible orders and subgraphs of fixed points hypothetical distance-

regular graph with intersection array {99, 84, 1; 1, 12, 99}.
Theorem. Let Γ be a distance-regular graph with the intersection array {99, 84, 1; 1, 12, 99}, G =

Aut(Γ), g be an element of prime order p in G, and Ω = Fix(g) contains at s vertices in the t antipodal
classes. Then π(G) ⊆ {2, 3, 5, 7, 11} and one of the following assertions holds:

(1) s = 0 and either
(i) p = 5, α1(g) = 100l, α2(g) = 800− 100l, α3(g) = 0, where 0 ≤ l ≤ 8 or
(ii) p = 2, α3(g) = 16l, α1(g) = 16l − 40m for some 0 ≤ l ≤ 50;

(2) p = 11, t = 1 and α1(g) = 220l − 44;
(3) p = 7, Ω is a t-clique and either

(i) t = 2, α3(g) = 14, α1(g) = 140l + 98 or
(ii) t = 9, α3(g) = 63, α1(g) = 140l − 49;

(4) p = 5, s = 3, α0(g) = 3t and t = 15, 20, ..., 35;
(5) p = 3 and either

(i) s = 2 and t ∈ {1, 4, ..., 25} or
(ii) s = 5 and t = 1, 4, 7, ..., 22 or
(iii) s = 8 and t = 1, 4, 7, 10, 13;

(6) p = 2, t is even and either
(i) s = 2 and t ≤ 28 or
(ii) s = 4 and t ≤ 28 or
(iii) s = 6 and t ≤ 18 or
(iv) s = 8 and t ≤ 12.

Corollary. Let Γ be a distance-regular graph with the intersection array {99, 84, 1; 1, 12, 99} and G =
Aut(Γ) acts transitively on the set of vertices graph Γ. Then G is a {2, 3, 5}-group.

The work is supported by RFBR (project No. 14-01-31298-mol_a).
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Automorphisms of strongly regular graph with parameters (1197,156,15,21)
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Alexander Makhnev
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We consider nondirected graphs without loops and multiple edges. For vertex a of a graph Γ the
subgraph Ωi(a) = {b | d(a, b) = i} is called i-neighborhood of a in Γ. We set [a] = Γ1(a), a⊥ = {a} ∪ [a].

Degree of an vertex a of Γ is the number of vertices in [a]. Graph Γ is called regular of degree k, if
the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, µ) if Γ
is regular of degree k on v vertices, and |[u]∩ [w]| is equal λ, if u adjacent to w, is equal µ, if d(u,w) = 2.
Amply regular graph of diameter 2 is called strongly regular.

A partial geometry pGα(s, t) is a geometry of points and lines such that every line has exactly s+ 1
points, every point is on t + 1 lines (with s > 0, t > 0) and for any antiflag (P, y) there are exactly
α lines zi containing P and intersecting y. In the case α = 1 we have generalized quadrangle GQ(s, t).
The incidence system (X,B) with a point-set X and block-set B is called t-(V,K,Λ) design, if |X| = V ,
each block contains exactly K points and any t points belong to exactly Λ blocks. Every 2-design is
(V,B,R,K,Λ) design, where B = |B|, each point belong to exactly R blocks, and we have equalities
V R = BK, (V − 1)Λ = R(K − 1). Design is symmetric, if B = V . Design is called quasi-symmetric, if
for every two blocks B,C ∈ B we have |B ∩C| ∈ {x, y}. Numbers x, y are called intersection numbers of
quasi-symmetric design, and it is suggested that x < y.

Block-graph of quasi-symmetric design (X,B) have as a vertex set B and two blocks B,C ∈ B are
adjacent, if |B ∩ C| = y.

Proposition 1 ( [1], theorem 5.3). Block-graph of quasi-symmetric (V,B,R,K,Λ) design is strongly
regular with spectrum ((R−1)K−xB+x)/(y−x)1, (R−K−Λ +x)/(y−x)V−1, −(K−x)/(y−x)B−V .

Derived design for t-(V,K,Λ) designD = (X,B) at x ∈ X is designDx with the point-setXx = X−{x}
and block-set Bx = {B − {x} | x ∈ B ∈ B}. Design E is called an extension of D,if derived design of E
at each point is isomorphic to D. Residual design of D at a block B is the design DB with the point-set
XB = X −B and block-set BB = {C ∈ B} | |B ∩ C| = 0}.

It is known that projective plane is extendable if and only if its order is 2 or 4. P. Cameron ( [1],
theorem 1.35) classified extensions of symmetric 2-designs.

Proposition 2. Let 3-(V,K,Λ) design E = (X,B) is an extension of symmetric 2-design. Then one
of the following holds:

(1) E is the Hadamard 3-(4Λ + 4, 2Λ + 2,Λ) design;
(2) V = (Λ + 1)(Λ2 + 5Λ + 5) and K = (Λ + 1)(Λ + 2);
(3) V = 496, K = 40 and Λ = 3.

In the case (3) we have R = V − 1 = 495, B = V R/K = 496 · 495/40 = 6138 and the complement
to block-graph has parameters (6138,1197,156,252) and spectrum 11971, 95642,−105495. Hence maximal
order of coclique is at most vm/(k + m) = 6138 · 105/1302 = 495. In particular, the Hoffman bound
is equal to Cvetkovich bound. The complement graph to block-graph of 3-(496,40,3) design is called
Cameron monster. In [1] it is proved

Proposition 3. For Cameron monster Γ the following hold:
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(1) neighborhood of every vertex of Γ is strongly regular graph with parameters (1197, 156, 15, 21) and
spectrum 1561, 9741,−15455, and the order of coclique in this graph is at most 105;

(2) the set of blocks Cx containing apoint x of designe E is 495-coclique of Γ, for which the equality
holds in Hoffman bound and Cvetkovich bound;

(3) subgraph Γ − Cx is strongly regular graph with parameters (5643, 1092, 141, 228) and spectrum
10921, 95148,−96494;

(4) for distinct points x, y of design E we have |Cx ∩ Cy| = 39, and for coclique Cx − Cy of graph
Γ− Cy the equality holds in Hoffman bound.

In this paper automorphisms of strongly regular graph with parameters (1197, 156, 15, 21) are founded.

Theorem. Let Γ be a strongly regular graph with parameters (1197, 156, 15, 21), G = Aut(Γ), g an
element of prime order p of G and Ω = Fix(g). Then |Ω| ≤ 171, π(G) ⊆ {2, 3, 5, 7, 11, 13, 19} and one of
the following holds:

(1) Ω is empty graph, eitrher p = 3 and α1(g) = 72l, or p = 7 and α1(g) = 168l − 21, or p = 19 and
α1(g) = 456l + 171;

(2) Ω is n-clique, end either
(i) p = 13, n = 1 and α1(g) = 312l + 156, or
(ii) p = 2, n = 9 and α1(g) = 48l + 12 or n = 11 and α1(g) = 32l − 12, or
(iii) p = 5, n = 2 and α1(g) = 120l + 45 or n = 7 and α1(g) = 120l − 30;

(3) Ω is 3t+ 1-coclique, p = 3 and α1(g) = 72l + 12− 45t;
(4) Ω contains geodesic 2-way and p ≤ 13.

Corollary. Strongly regular graph with parameters (1197, 156, 15, 21) is not vertex-symmetric.

This work was supported by the grant of Russian Science Foundation, project no. 15-11-10025
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Faithful representations of the strong endomorphism monoid of graphs and n-uniform
hypergraphs

Eugenja Bondar
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Ural Federal University, Ekaterinburg, Russia

U. Knauer and M. Nieporte [1] proved that the monoid of strong endomorphisms of any finite
undirected graph without multiple edges is isomorphic to the wreath product of a monoid with a certain
small category. It was shown in [1] also that the representation fails in infinite case. In [2] we have defined
a certain class of infinite undirected graphs and a certain class of infinite n-uniform hypergraphs and
found faithful representations of the strong endomorphism monoid of graphs and hypergraphs from these
classes. Here we generalize results of [2].

Let G = (V,E) be an infinite undirected graph without multiple edges. Recall that a transformation
ϕ : V → V is called a strong endomorphism of G if {x, y} ∈ E ⇔ {xϕ, yϕ} ∈ E for all x, y ∈ V . The set
of all strong endomorphisms of a graph G forms a monoid under composition and is denoted by SEndG.
By N(x) we denote the neighborhood of a vertex x ∈ V , that is, the set {y ∈ V | {x, y} ∈ E}. Let ν
be the equivalence on V defined by x ν y ⇔ N(x) = N(y) for x, y ∈ V . The ν-class that contains x is
denoted by xν . The graph G/ν with the vertex set V/ν and the edge set {{aν , bν} | {a, b} ∈ E} is called
the canonical strong quotient graph of the graph G.

A hypergraph is a pair (V, E), where V is a nonempty set of elements called vertices and E is a family
of nonempty subsets of V called edges. A hypergraph H is called an n-uniform hypergraph if it has no
multiple edges and each edge consists of exactly n vertexes. By Cn we denote the class of all n-uniform
hypergraphs. A transformation α : V → V of a hypergraph H ∈ Cn is called a strong endomorphism of
the hypergraph if A ∈ E ⇔ Aα ∈ E for all A ⊆ V , |A| = n. The set of all strong endomorphisms of a
hypergraph H forms a monoid under composition and is denoted by SEndH.

Let H ∈ Cn and x be a vertex of H. A neighborhood of x is defined by the formula N (x) = {A ⊆
V : |A| = n− 1, A ∪ {x} ∈ E}. By ρ(x) we denote the number of edges that contain x. For an arbitrary
hypergraph H ∈ Cn we define the equivalence relation ν on its vertex set by the rule:

x ν y ⇔ N (x) = N (y) if n ≥ 2, and x ν y ⇔ ρ(x) = ρ(y) if n ∈ {0, 1}.

LetH/ν be the hypergraph whose vertex set equals V/ν, and edge set consists of all Aν = {aν | a ∈ A},
A ⊆ V such that there exists a transversal T of the family Aν with T ∈ E(H). The hypergraph H/ν is
called the canonical strong quotient hypergraph of the hypergraph H.

Let SEndν G ⊆ SEndG (SEndν H ⊆ SEndH) be the set of the strong endomorphisms of G
(respectively H) that preserve the relation ν.

Theorem. For an arbitrary infinite undirected graph without multiple edges G (infinite n-uniform
hypergraph H) the set SEndν G (SEndν H) constitutes a submonoid of SEndG (SEndH), which is
isomorphic to a wreath product of all strong injective endomorphism monoid of G/ν (H/ν) with a
certain small category.

The aforementioned results of [2] are immediate consequences of our theorem. Moreover, the theorem
is true for arbitrary graphs without multiple edges and n-uniform hypergraphs.

Reference

[1] U. Knauer, M. Nieporte, Endomorphisms of graphs I. The monoid of strong endomorphisms// Arch. Math.
1989. Vol. 52. P. 607-614.

[2] E.A. Bondar, Yu. V. Zhuchok, Semigroups of the strong endomorphisms of infinite graphs and hypergraphs
// Ukr. Math. J. 2013. Vol. 65, no. 6. P. 823–834.

August, 9-15, 2015 38 Yekaterinburg, Russia



Groups and Graphs, Algorithms and Automata Abstraсts – Contributed Talks

Vector space model using semantic relatedness

Dmitry Bondarchuk
Ural State University of Railway Transport, Yekaterinburg, Russia

Computers understand very little of the meaning of human language. This profoundly limits our
ability to give instructions to computers, the ability of computers to explain their actions to us, and the
ability of computers to analyse and to process text. Vector space models (VSM) [1] are used to overcome
these limitations. However, classic VSM cannot identify semantic information [2], which results is a
significantly lower expert recognition. To solve this problem, we propose a new model based on semantic
relatedness (similarity) estimation. Measuring the semantic relatedness of words is a fundamental
problem in natural language processing and has many useful applications, including textual entailment,
word sense disambiguation, information retrieval and automatic thesaurus discovery. Experimental
results indicates that the proposed model outperforms the classic VSM. All experiments are done on
several linguistic resources such as dictionaries, corpuses or free encyclopedias etc.
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Complication of the state orgraph for the queuing system with distinct channels

Maksim Bukarenko
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Let us consider a queuing system T with distinct channels P1, ..., Pn, n > 1 (distinct channels are
the channels with heterogeneous service efficiencies µi 6= µj and/or separate queues which lengths are
mk ≥ 0, 1 ≤ k ≤ n). The work of such a system presupposes the presence of dispatcher device D which
distributes the arrived jobs between the channels in accordance with optimization criterion L. The known
problem of “slow server” shows that if the channels are distinct according to their efficiency it is important
to forward the arrived job to the most efficient channel Pi, even if a lower efficiency channel Pj , µi > µj
stands idle at that moment. Another case (when each channel has a separate queue) also presupposes
that in a number of cases it is more profitable to forward a job to a queue of a more efficient channel
(though its queue can be filled up to a greater extent), than to place it in a shorter line of a slow channel.

In this connection a simple representation of a queuing system T with a linear state orgraph G(T ):
S0 ↔ S1 ↔ S2 ↔ ...↔ SN of a corresponding birth and death process is impossible. Here a state’s index
j ∈ 1, N is equal to the number of jobs in a system, while its maximal value is equal to the sum of line’s
maximal lengths and a number of serving channels: N = n+m1 + ...+mn.

G(T ) state orgraph in case of distinct serving channels acquires a larger number of states and ramified
nonlinear form [1], [2]. This is explained by the fact that there appear the distinct variants of states
S(k1, ..., kn) with the equal sum of jobs within a system: 0 ≤ k1 + ... + kn ≤ n + m1 + ... + mn. Here
ki ∈ 0,mi is a sum of a number of jobs within channel i and within its queue, i ∈ 1, n. Dispatcher D
should take into account the occupancy rate of the serving channels and their queues S(k1(t), ..., kn(t))
at the job arrival moment t. Moreover, let us interpret t as a time-step of the system operation. Let us
describe the operation of the dispatcher D of the queuing system T with distinct channels by the finite
state machine K which responds to the events of job arrival to the system’s input or processed job release
by one of the channels. Its input alphabet is A = {α0, α1, ..., αn} where α0 is a signal for job arrival to
the queuing system T , αi is a signal for the finish of job processing by the channel i, i ∈ 1, n.

Depending on the occupancy rates of the channels and their queues, dispatcher D should either
reject the job arrived during the time-step t or forward it to the queue of one of the channels:
D(S(k1(t), ..., kn(t))) = S(k1(t+ 1), ..., kn(t+ 1)), ki(t) ≤ ki(t+ 1), i ∈ 1, n Various optimality criteria L
can be used in practice: reject or idle state probability minimization, minimization of the average time of
the job standing in a queue or a system, maximization of the general capacity of the system and others.
Each of these criteria is not equivalent to others which leads to various dispatching protocols D = D(L).
Let us suggest queuing system T operation simulation with a finite state machine K(T, L) [1], [2] as a
method to find the optimal dispatching protocol D = D(L).

As a compensation for complication of G(T ) graph we get a possibility of universal representation
by K(T, L) finite state machine in case of non-Poisson arrival, i.e. when arrival is either non-ordinary or
non-stationary. Moreover, finite state machines simulating queuing systems with additional conditions,
such as jobs priority, sequential compilation procedure, return of unprocessed or partially processed jobs
back to the system, etc., are built up uniformly.
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Labeled graphs’ vertices and edges sets clustering
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Let there be given a connected indirected loop-free graph G(V,R) with vertices νi ∈ V , i ∈ 1, n,
n := |V | < ∞, and edges ri ∈ R, i ∈ 1,m, m := |R| < ∞, labeled with nonnegative labels |νi| ≥ 0 and
|ri| ≥ 0 correspondingly.

Let us consider the problem of partition of V set of vertices of G graph into disjoint clusters Ui ⊂ V ,
i ∈ 1, k, k <∞ with fixed centers ui ∼ Ui, ui ∈ V and minimality condition for the distance between the
vertex and the center of corresponding cluster. The distance ρV (νi, νj) between the vertices νi, νj ∈ V
is defined as the minimal labels sum for the edges which constitute the path connecting these vertices.
Note that introduced distance ρV satisfies metric separation axiom if and only if there are no edges with
zero labels. Let us call conformal the introduced clustering criterion for G graph vertices and ρV metric.

Inverse problem is given as follows: to label the edges r ∈ R of connected indirected loop-free finite
graph G(V,R) (with a given V vertexes set partition into disjoint clusters) with numeric nonnegative
labels |r| ≥ 0 generating conformal ρV metric. It has trivial solution: zero labels of the edges, incident
with one cluster vertices, and unit labels of the rest of the edges generate conformal metric without
separation axiom. The solution with separation axiom is also possible: it is enough to label the edges
incident with one cluster vertices with sufficiently small labels and the rest of the edges with sufficient
large ones. Accurate estimates of these labels depend on the structure of the clusters and V set of vertexes.

Thus partition G(V,R) graph vertices set into clusters is equivalent to labels identification for the
edges generating ρV conformal metric.

Transposing V set of vertices and R set of edges of G(V,R) graph in the presented rule for clusters
conforming we come to the similar conclusion regarding R set of edges partition into disjoint clusters: it
is equivalent to labels identification for the edges generating ρV conformal metric.

Genuinely, we shall carry out the partition of R set of edges into disjoint clusters Wi ⊂ R, i ∈ 1, l,
l < ∞, with fixed centers wi ∼ Wi, wi ∈ R and minimality condition for the distance between the edge
and the center of corresponding cluster, according to the given labels |νi| ≥ 0 of vertices νi ∈ V . The
distance ρR(ri, rj) between the edges ri, rj ∈ R is defined as a minimal sum of the labels of the vertices
on the path connecting these edges. Note that introduced distance ρR satisfies metric separation axiom if
and only if there are no vertices with zero labels. Let us call conformal the introduced clustering criterion
for G graph edges and ρR metric. The inverse problem is the identification of the vertices labels set
generating the conformal metric ρR according to the given partition of R set of edges into clusters. It is
solved in a similar way.

The fact that vertices clustering problem with edges labeled and edges clustering problem with
vertices labeled are symmetric ones requires to develop a universal algorithm for corresponding ρV and ρR
metrics calculation in vertexes and edges sets of G(V,R) graph. Matrix modification of Bellman-Moore
algorithm [1] which enables simple software implementation can be suggested for this purpose.
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Algorithmic recognition by spectrum
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The set of element orders of a finite group G is called the spectrum and denoted by ω(G), and groups
with the same spectrum are said to be isospectral. The following question seems to be natural: ifM is a
set of positive integers, does a group G with ω(G) =M exist, and if so, can one describe all such groups?
We are interested in algorithmic aspect of this problem under assumption that G is simple.

Given a finite group G, the setM is called almost G-spectral, ifM⊆ ω(G), maxM = maxω(G), and
ω(H) 6= ω(M) for every simple group H whose spectrum differs from the spectrum of G. For a finite set
M, denote by Ω(M) the set of all simple groups G such thatM is almost G-spectral.

We prove the following statement.

Theorem. Let M be a finite set of positive integers, m = |M| and M = maxM. Then, given M, a
group G such that G lies Ω(M) can be determined in time polynomial in m logM .

We also are going to discuss problems of effective generation of the spectrum of a group of Lie type.

The work is supported by Russian Science Foundation (project 14-21-00065).
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Locally graded groups with the minimal condition for uncomplemented subgroups

Nickolay Chernikov
Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev, Ukraine

The author has established the following theorem.

Theorem. The locally graded group satisfies the minimal condition for uncomplemented subgroups iff
it is completely factorizable or Chernikov.

As well know, the class of locally graded groups is extremely wide.

Yekaterinburg, Russia 43 August, 9-15, 2015



Abstraсts – Contributed Talks Groups and Graphs, Algorithms and Automata

Modules over group rings of locally finite groups with finiteness restrictions

Olga Dashkova
The Branch of Moscow State University in Sevastopol, Sevastopol, Russia

Let A be an RG-module, R be an associative ring, G be a group. G is a finite-finitary group of
automorphisms of A if CG(A) = 1 and A/CA(g) is finite for any g ∈ G [1]. Finite-finitary groups of
automorphisms of A with additional restrictions were studied in [1].

Important finiteness conditions in group theory are the weak minimal condition on subgroups and
the weak maximal condition on subgroups. Let G be a group, M be a set of subgroups of G. G is
said to satisfy the weak minimal condition on M-subgroups if for a descending series of subgroups
G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gn ≥ Gn+1 ≥ · · · , Gn ∈ M, n ∈ N, there exists the number m ∈ N such that an
index |Gn : Gn+1| is finite for any n ≥ m [2]. Similarly G is said to satisfy the weak maximal condition on
M-subgroups if for an ascending series of subgroups G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gn ≤ Gn+1 ≤ · · · , Gn ∈M,
n ∈ N, there exists the number m ∈ N such that an index |Gn : Gn+1| is finite for any n ≥ m [3]. These
finiteness conditions were applied to investigate infinite dimensional linear periodic groups [4].

Let Lnf (G) be the system of all subgroups H of G such that A/CA(H) is infinite. We say that
G satisfies the condition Wmin−nf if G satisfies the weak minimal condition on M-subgroups where
M = Lnf (G) and G satisfies the condition Wmax−nf if G satisfies the weak maximal condition on
M-subgroups whereM = Lnf (G).

Theorem 1. Let A be an RG-module, R be an associative ring, G be a locally finite group. If G
satisfies either Wmin−nf or Wmax−nf then either G is a Chernikov group or G is a finite-finitary group
of automorphisms of A.

Let GS be the intersection of all normal subgroups K of G such that G/K is soluble.

Theorem 2. Let A be an RG-module, R be an associative ring, G be a locally soluble periodic group.
If G satisfies either Wmin−nf or Wmax−nf then G/GS is soluble.
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Decomposition of lattices of maximal antichains into the S-glued sum

Ilia Derendiaev
Ural Federal University, Yekaterinburg, Russia

Alexander Popovich
Ural Federal University, Yekaterinburg, Russia

An antichain A of a poset P is called maximal if every element of P is comparable to an appropriate
element of A. Consider the following relation on the set MA(P ) of all maximal antichains of P :

A 6 B iff for all a ∈ A there exist b ∈ B such that a 6 b.

If P is finite, then (MA(P ),6) is a lattice. It is well-known (see [1]) that every finite lattice can be
represented as the lattice of maximal antichains of a suitable poset. There are many such representations
(see [2]), but all known representations of finite lattices as lattices of maximal antichains use posets of
length 1.

In [3] V. Garg presented an application of lattices of maximal antichains in the theory of parallel
computations. In his model elements of a poset were regarded as computations which are made by a
single computer, and the formula a > b means that the computation a starts after the computation b.
Suppose that we want to minimize the number of computations without changing the lattice of maximal
antichains. It is easy to show that the required poset is of maximal length. Then we obtain the following
optimization problem:

Given a finite lattice L, find a finite poset P of maximal length such that MA(P ) ∼= L.
To solve this problem we use the notion of the S-glued sum (the definition can be founded in [4]). We

prove the following result.

Theorem. Let L be a finite lattice. Then the following statements are equivalent:
(1) L is the S-glued sum for some finite lattice S of length k.
(2) There exist a finite poset P of length k such that AM(P ) ∼= L.

In our talk we also discuss an algorithm that construct the corresponding poset.
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Network project graph construction on the basis of jobs precedence table

Alexandr Dokuchaev
Applied Math. and IT Dept., Samara State Technical University, Samara, Russia

Andrey Kotenko
Applied Math. and IT Dept., Samara State Technical University, Samara, Russia

It is convenient to investigate project P = {a1, ..., an}, consisting of a large number of connected
jobs ai, with its orgraph Γ(P ) = GP (V,R) where project jobs ai ∈ 1, n are represented by its edges
and the events of separate jobs start and finish coordination are represented by its vertexes vj ∈ V ,
j ∈ 1, |V |. However, information about technological (logical) precedence of project jobs is used to be
source information. It does not show directly a set of vertexes V . The transition from precedence table
T (P ) to the project graph Γ(P ) involves sufficient problems, as it is often impossible to carry out such a
transition without introducing additional (dummy) jobs an+1, ..., an+k, k > 0, missed in the precedence
table. Evidently, we should use the minimal number (k → min) of dummy jobs, as additional vertexes
and edges of GP (V,R) graph make further investigation of the project P more complicated. Moreover,
the specification of the minimal necessary number of additional vertexes and edges makes it possible to
identify P project with its Γ(P ) orgraph unambiguously. Let us suggest the following algorithm of Γ(P )
graph construction for the project P . It consists of 5 steps [1], [2].

1. Let us pass from T (P ) precedence table to the T1(P ) direct precedence table with only immediate
predecessors for each job ai having been left.

2. On the basis of T1(P ) table let us generate (|R|x|R|)− matrix A(SP ) of SP relation of direct
precedence of P project jobs. In this matrix in the row corresponding to the job ai unit elements stand
for the columns of its immediate predecessors.

3. Let us correctly reindex project jobs, i.e. let us assign such indexes to them, so that job-predecessors
would get an index, less than one got by the job-successor. This is always admissible if there are no logical
loops in the precedence table T (P ) and consequently in the table T1(P ). In case there exist more than
one correct indexing schemes let us additionally claim that the jobs with a less number of predecessors
acquire minor indexes. Let us consider a1, ..., a|R| indexing correct, so all elements of A(SP ) matrix within
its main diagonal and over it are zeros.

4. Let us find submatrix
(
B1 B2

B3 B4

)
of A(SP ) matrix consisting of blocks B1, B2, B3, B4 of corresponding

dimensions rxu, rxv, txu, txv; r, t, u, v > 0; where B1, B3, B4 blocks are filled in with unit elements, while
B2 block is filled in with zeros. If there is no such a submatrix of (r+ t)x(u+ v), additional dummy jobs
are not required and Γ(P ) orgraph is trivially constructed at a set of vertexes V . In any other case it is
necessary to add at least one dummy job. For this purpose we go to the 5th step.

5. Let A(SP ) matrix rows corresponding to jobs as1 , as2 , ..., asr get into B1 and B2 blocks, while
those corresponding to asr+1

, asr+2
, ..., asr+t

jobs get into B3 and B4 blocks (r > 0,t > 0). Let us add
dummy job b, leading from the common start of the jobs as1 , as2 , ..., asr to common start of the jobs
asr+1

, asr+2
, ..., asr+t

to the project P and get back to step 1.
Let us repeat steps 1-5, until project P is filled up with all the necessary dummy jobs. After this

graphical realization of the project orgraph Γ(P ) becomes trivial. As step 4 to 5 transitional condition is
a NC for adding a dummy job, the algorithm guarantees the minimal number of such additions.
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On the decomposition of elementary transvection in elementary group

Roxana Dryaeva
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Vladimir Koibaev
North-Ossetia State University, Vladikavkaz, Russia

We consider the following data: an elementary net σ = (σij) (elementary carpet) of the additive
subgroups of a commutative ring (the net without the diagonal) of the order n, a derived net ω = (ωij),
which depends of the net σ, the net Ω = (Ωij), which associated with the elementary group E(σ),
where ω ⊆ σ ⊆ Ω and the net Ω is the least (complemented) net among the all nets which contain the
elementary net σ. We prove that every elementary transvection tij(α) can be decomposed as a product
of two matrixes M1 and M2, where M1 is the element of the group 〈tij(σij), tji(σji)〉, M2 is the element

of the net group G(τ) and the net τ has the representation τ =

(
Ω11 ω12

ω21 Ω22

)
.

The work of V. A. Koibaev was supported by the RFBR (project 13-01-00469). The results of the
present paper were obtained in the frame of the state assignment of the Russian Ministry of Education.
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Automorphisms of a distance-regular graph with intersection array {100, 66, 1; 1, 33, 100}
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A. A. Makhnev and D. V. Paduchikh have found [1] intersection arrays of distance-regular graphs,
in which neighborhoods of vertices are strongly-regular graphs with second eigenvalue 3. A. A. Makhnev
suggested the program to research of automorphisms of these distance-regular graphs. In this moment
cases {100, 66, 1; 1, 33, 100}, {176, 150, 1; 1, 25, 176} and {256, 204, 1; 1, 51, 256} are not investigated.

In this paper are researching possible orders and subgraphs of fixed points of automorphisms
of a hypothetical distance-regular graph with intersection array {100, 66, 1; 1, 33, 100}. Possible
automorphisms of a strongly-regular graph with parameters (100,33,8,12) found in [2].

Theorem 1. Let Γ be a distance-regular graph with intersection array {100, 66, 1; 1, 33, 100}, G =
Aut(Γ), g be an element of G with prime order p and Ω = Fix(g) contains along s vertices in t antipodal
classes. Then π(G) ⊆ {2, 3, 5, 7, 11, 29, 31, 101} and one of the following assertions holds:

(1) Ω is an empty graph and either p = 101, α1(g) = 101, or p = 3, α1(g) = 60m+ 27l + 21;

(2) p = 31, Ω is a distance-regular graph with intersection array {7, 4, 1; 1, 2, 7};

(3) p = 29, Ω is a distance-regular graph with intersection array {13, 8, 1; 1, 4, 13};

(4) p = 11 and t = 2, 13, 24;

(5) p = 7 and either Ω is a distance-regular graph with intersection array {16, 10, 1; 1, 5, 16}, or t =
24, 31;

(6) p = 5 and t = 1, 16, 21, 26, 31;

(7) p = 3, s = 3 and t = 2, 5, ..., 32;

(8) p = 2, t is odd and either s = 3, t = 1, 3, 5, ..., 33, or s = 1 and t = 1, 3, 5, ..., 11.

Theorem 2. Let Γ be a distance-regular graph with intersection array {100, 66, 1; 1, 33, 100}, in which
neighbourhoods of vertices are strongly-regular graphs with parameters (100, 33, 8, 12), G = Aut(Γ), g be
an element of G with prime order p > 2 and Ω = Fix(g) is not empty graph, which contains along s
vertices in t antipodal classes. Then π(G) ⊆ {2, 3, 11, 101} and one of the following assertions holds:

(1) p = 11, s = 3 and t = 2;

(2) p = 3, s = 3 and either t = 5, Ω is an union of isolated 5-cliques, or t = 5, 8, ..., 17 and
neighbourhoods of vertices in Ω are cocliques, or t = 11, 14, ..., 26 and neighbourhood of any vertex
in Ω contains geodesic 2-path;

(3) p = 2, either Ω contained in antipodal class, or t = 5 and Ω is an union of isolated 5-cliques and
s = 1, 3, or neighbourhoods of vertices in Ω are unions of isolated cliques and s = 3, t = 3, 5, or
neighbourhood of any vertex in Ω contains geodesic 2-path and s = 3, t = 7, 9, ..., 33.

Corollary. A distance-regular graph with intersection array {100, 66, 1; 1, 33, 100} is not vertex-
transitive.
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Algebra variety properties given by identities of derived objects

Olga Finogenova
Ural Federal University, Yekaterinburg, Russia

We consider varieties of associative algebras over a field or over Z, i.e. varieties of associative rings.
With any algebra 〈A,+, ·〉, two semigroups and a Lie algebra are associated in a natural way. The first

semigroup is just the multiplicative semigroup 〈A, ·〉 of the algebra. The second one is so-called adjoint
semigroup 〈A, ◦〉, where the multiplication ◦ (sometimes referred to as circle composition) is defined by
letting a◦b = a+b−ab for all a, b ∈ A. The Lie algebra is the algebra 〈A,+, [, ]〉, where [x, y] = x ·y−y ·x.

In this talk we discuss some algebra variety properties which are given by identities of these semigroups
or by identities of this Lie algebra.
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Artificial Landmark Placement for Mobile Robot Navigation

Anna Gorbenko
Ural Federal University, Yekaterinburg, Russia

Vladimir Popov
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The integration of robots into real world environments is a difficult problem. The problem of improving
the performance of robots by autonomously adapting them to different tasks and environments has been
extensively studied recently (see e.g. [1,2]). However, the problem is still far from being solved. Therefore,
for many applications, it is preferable to use different adaptations of environments. In particular, artificial
visual landmark navigation has been widely studied (see e.g. [3,4]). We consider the problem of artificial
visual landmark placement for a low-cost mobile robot navigation. We assume that an instrumentation
of the environment with artificial visual landmarks is used to improve the mobile robot performance. We
use a humanoid robot for the placement of artificial visual landmarks. We need to minimize the path
length of the humanoid robot.

We assume that the mobile robot must solve some task. To solve the task, the robot must visit the
multiset of points U = {U1, U2, . . . , Un} in the predetermined sequence U1, U2, . . . , Un. Let V be the set
such that V = {Vi | Vi ∈ U}. Let S = {S1, S2, . . . , Sk} ⊆ U be the set of all points that must be equipped
with artificial visual landmarks. Let G be the weighted complete graph with the set of vertices V and
the weight function F . We assume that the robots have the same speed. It is assumed that the robots
have arbitrary initial positions. Also, we assume that the robots do not stop after the start of movement.
Let tM (Si) be the time such that the mobile robot is located at Si for the first time, i ∈ {1, 2, . . . , k}.
Let tH(Si) be the time such that the humanoid robot is located at Si, i ∈ {1, 2, . . . , k}. Let A be the
weighted complete graph with the set of vertices S and the weight function F |S .

Artificial Visual Landmark Placement for Mobile Robot Navigation (LP):
Instance: Weighted complete graphs G and A, the sequence U1, U2, . . . , Un.
Task: Find the shortest tour of S such that tM (Si) ≤ tH(Si), i ∈ {1, 2, . . . , k}?
The decision version of LP can be formulated as following.
LP_D:
Instance: Weighted complete graphs G and A, the sequence U1, U2, . . . , Un, positive integer t.
Task: Is there a tour of S such that tM (Si) ≤ tH(Si) ≤ t, i ∈ {1, 2, . . . , k}?

Theorem 1. LP_D is NP-complete.

Theorem 2. LP is FPNP-complete.

In view of intractability of LP, we propose an explicit reduction from LP_D to the satisfiability
problem.
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Chain varieties of monoids
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Since the first half of 1960’s, more than 200 articles appeared where the lattice of semigroup varieties
is investigated. Many deep and interesting results were obtained here (see the survey articles [1, 1]). In
contrast, only a few isolated facts is known so far about the lattice of monoid varieties. We know only
two works devoted to examination of this lattice, namely [3, 4].

One of the first natural steps in investigation of varietal lattice of algebras of any type is a description
of varieties whose lattice of subvarieties is a chain. Varieties with such a property are called chain varieties.
Non-group chain varieties of semigroups and locally finite chain varieties of groups have been completely
determined in [5] and [6] respectively. The problem of a complete description of chain varieties of groups
seems to be extremely difficult. To confirm this claim, we refer to the fact that there exist uncountably
many periodic group varieties whose subvariety lattice is the 3-element chain [7].

We completely classify all non-group chain varieties of monoids. The description is given in a language
of identities and in terms of minimal forbidden subvarieties. We do not reproduce the description here
because the corresponding list of varieties is quite lengthy. It consists of two countable series of varieties
and 28 “sporadic” varieties. It is interesting to note that one of these two countable series of varieties
appeared recently in the article [8] in connection with an investigation of so-called Cross varieties of
monoids.
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A graph clustering problem with bounded number of clusters
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We consider a version of the graph clustering problem, so called correlation clustering or graph
approximation problem which is one of most visual formalizations of the clustering problem. The objective
of the clustering problem is to partition of objects (data elements) into a family of subsets (i.e., clusters)
such that objects within a cluster are more similar to one another than objects in different clusters. In
the graph approximation problem one has to partition the vertices of a graph into clusters taking into
consideration the edge structure of the graph: the goal is to minimize the number of edges between the
clusters and the number of missing edges within the clusters. For statements and various interpretations
of this problem, see [1–4].

We consider only simple graphs, i.e., the graphs without loops and multiple edges. A graph is called
a cluster graph if each of its connected components is a complete graph. Denote byMk(V ) the set of all
cluster graphs on a vertex set V consisting of exactly k nonempty connected components, 2 ≤ k ≤ |V |.
If G1 = (V,E1) and G2 = (V,E2) are graphs on the same vertex set V , then the distance between them
is defined as ρ(G1, G2) = |E1 \ E2|+ |E2 \ E1|.

The following version of the graph clustering problem is known as the graph approximation problem
or correlation clustering.

Problem Ak. Given a graph G = (V,E) and an integer k, 2 ≤ k ≤ |V |, find a graph M∗∈Mk(V )
such that

ρ(G,M∗) = min
M∈Mk(V )

ρ(G,M). (1)

In machine learning clustering methods fall under the section of unsupervised learning. At the same
time semi-supervised clustering methods use limited supervision. For example, relatively few objects are
labeled (i.e., are assigned to clusters), whereas a large number of objects are unlabeled. This leads to the
following version of the graph clustering problem.

Problem A+
k . Given a graph G = (V,E), an integer k, 2 ≤ k ≤ |V |, and a set X = {x1, . . . , xk} ⊂ V

(xi 6= xj unless i = j), find a graph M∗∈Mk(V ) provided that minimum in (1) is taken over all cluster
graphs M ∈ Mk(V ) such that xi ∈ Vi, i = 1, . . . , k, where Vi is the vertex set of ith cluster (connected
component) of the graph M .

Problem Ak is known to be NP-hard for any fixed integer k > 2 [3]. We prove that problem A+
k is NP-

hard for any fixed integer k > 2, and for k = 2, 3 we propose constant-factor approximation polynomial-
time algorithms for problems Ak and A+

k .
Research of the first author was supported by RSF grant 15-11-10009.
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Automorphisms of graph with intersection array {169, 126, 1; 1, 42, 169}
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We consider nondirected graphs without loops and multiple edges. For vertex a of a graph Γ the
subgraph Ωi(a) = {b | d(a, b) = i} is called i-neighborhood of a in Γ. We set [a] = Γ1(a), a⊥ = {a} ∪ [a].

Degree of an vertex a of Γ is the number of vertices in [a]. Graph Γ is called regular of degree k, if
the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, µ) if Γ
is regular of degree k on v vertices, and |[u]∩ [w]| is equal λ, if u adjacent to w, is equal µ, if d(u,w) = 2.
Amply regular graph of diameter 2 is called strongly regular.

Jack Koolen suggested the problem investigation of distance-regular graphs whose local subgraphs
are strongly regular graphs with the second eigenvalue at most t for some natural number t. For t = 3
A. Kagazezheva and A. Makhnev [1] proved the next result

Proposition. Let Γ be a distance-regular graph with strongly regular local subgraphs having
eigenvalue 3 and parameters (v′, k′, 5, µ′). Then local subgraphs either isomorphic triangular graph
T (7) and Γ is a half graph of 7-cube, or have parameters (169, 42, 5, 12) and Γ has intersection array
{169, 126, 1; 1, 42, 169}.

In this paper it is founded automorphisms of distance-regular graph with intersection array
{169, 126, 1; 1, 42, 169}.

Theorem. Let Γ be a distance-regular graph with intersection array {169, 126, 1; 1, 42, 169}, and local
subgraphs of Γ are strongly regular with parameters (169, 42, 5, 12), G = Aut(Γ), g — an element of G
prime order p > 2 and Ω = Fix(g) is nonempty graph containing s vertices in t antipodal classes. Then
π(G) ⊆ {2, 3, 5, 7, 13, 17} and one of the following holds:

(1) some 〈g〉-orbit on Γ − Ω contains geodesic 2-way, either p = 7 and t = 2, or p = 5 and Ω is a
distance-regular graph with intersection array {9, 6, 1; 1, 2, 9};

(2) some 〈g〉-orbit on Γ−Ω is clique, p = 3 and either s = 4, t = 2, 5 and Ω is the union of 4 isolated
t-cliques, or s = 1 and Ω is 2-clique;

(3) every 〈g〉-orbit on Γ− Ω is coclique, either p = 13, Ω is an antipodal class, or p = 5 and t = 40,
or p = 3, s = 4 and t = 14.

Corollary. Let Γ be a distance-regular graph with intersection array {169, 126, 1; 1, 42, 169}, and local
subgraphs of Γ are strongly regular with parameters (169, 42, 5, 12). If G = Aut(Γ) is nonsolvable group
acting transitively on the vertex set of Γ, then S = S(G) is an elementary abelian 2-group, Ḡ = G/S
is isomorphic to Sp4(4), for any vertex a ∈ Γ we have Ga = 26 : (Z3 × A5), S contains normal in G
subgroup K of order 4, regular on each antipodal class, |S : S{F}| = 2 for antipodal class F , S/K is
irreducible F2Sp4(4)-module of order 28, 216, 232 and CS(f) = K for every element f of order 17 inG.

This work was supported by the grant of Russian Science Foundation, project no. 14-11-00061.
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Some combinatorial problems in symmetric groups
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One of the actual problems in the group theory is a representation of an element of the group by
the word of generators. For example, the study of infinite groups saturated by a set of finite groups is
this one. Also these tasks are arised in the many practical problems. For example, in the design of the
topology of a multiprocessor computing system (MCS). In this case the model of MCS will be presented
as the Cayley graph in which the the processors are the vertices of the graph and the edges correspond
to physical connections between processors.

Let Sn be the symmetric group of degree n and x = (1, 2), y = (1, 2, . . . , n) be generators of Sn. Let
x < y and elements of Sn written by words of generators be lenlex ordered. πi(n) denote elements of Sn
which have the maximal length in this ordering. Our hypothesis for n ≥ 6 is following.
1. For even n there is the only one permutation π(n):

π(n) = (1, 3, n, 2)

n−4
2∏
i=1

(ai, bi), ai = 3 + i, bi = n− i.

2. For odd n there are the only two permutations π1(n) and π2(n):

π1(n) = (1, 2)(a1, b1, a2, b2, . . . ,
n+ 3

2
), ai = 2 + i, bi = n+ 1− i, i ≤ n− 3

2
;

π2(n) = (1, 2)(3, n,
n+ 3

2
, a1, b1, a2, b2, . . .), ai =

n+ 3

2
− i, bi =

n+ 3

2
+ i, i ≤ n− 5

2
.

The following table shows examples of πi(n) for 6 ≤ n ≤ 12 which are obtained by computer computations.

Group Permutations πi(n) Product of cycles πi(n)

S6

(
1 2 3 4 5 6
3 1 6 5 4 2

)
(1,3,6,2)(4,5)

S7

(
1 2 3 4 5 6 7
2 1 7 6 3 5 4

)
(1,2)(3,7,4,6,5)(

1 2 3 4 5 6 7
2 1 7 6 4 3 5

)
(1,2)(3,7,5,4,6)

S8

(
1 2 3 4 5 6 7 8
3 1 8 7 6 5 4 2

)
(1,3,8,2)(4,7)(5,6)

S9

(
1 2 3 4 5 6 7 8 9
2 1 9 8 7 3 6 5 4

)
(1,2)(3,9,4,8,5,7,6)(

1 2 3 4 5 6 7 8 9
2 1 9 8 7 5 4 3 6

)
(1,2)(3,9,6,5,7,4,8)

S10

(
1 2 3 4 5 6 7 8 9 10
3 1 10 9 8 7 6 5 4 2

)
(1,3,10,2)(4,9)(5,8)(6,7)

S11

(
1 2 3 4 5 6 7 8 9 10 11
2 1 11 10 9 8 3 7 6 5 4

)
(1,2)(3,11,4,10,5,9,6,8,7)(

1 2 3 4 5 6 7 8 9 10 11
2 1 11 10 9 8 6 5 4 3 7

)
(1,2)(3,11,7,6,8,5,9,4,10)

S12

(
1 2 3 4 5 6 7 8 9 10 11 12
3 1 12 11 10 9 8 7 6 5 4 2

)
(1,3,12,2)(4,11)(5,10)(6,9)(7,8)

The work is supported by the Grant of the President of the Russian Federation (Project MD-
3952.2015.9).
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Finite groups with large irreducible character
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Let G be a finite group and Θ be an ordinary irreducible character of G. We study finite groups having
an ordinary irreducible character Θ such that |G| ≤ 2Θ(1)2. Groups with a character of large degree were
investigated by N. Snyder in [1].

Theorem Let G be a finite group with an ordinary irreducible character Θ such that Θ(1) = pq, where
p and q are different primes. If 2Θ(1)2 ≥ |G|, then G has an abelian normal subgroup of index pq.

Note that some sporadic simple groups G have an irreducible character Θ such that |G| < 3Θ(1)2.
For instance, the sporadic group Th = F3|3 of Thompson has an irreducible character Θ of degree
Θ(1) = 190373976, so that |Th| < 2, 51Θ(1)2.

It is easy to see that the Frobenius group of order n(n+ 1) with n = pq and n+ 1 = 2m is an example
of the group with an irreducible character Θ with degree pq.

Reference

[1] N. Snyder, Groups with a character of large degree // Proc. Amer. Math. Soc. 2008. Vol. 136. P. 1893–1903.
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Automorphisms of local subgraphs of pseudogeometric graph for pG3(7, 75)
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We consider nondirected graphs without loops and multiple edges. For vertex a of a graph Γ the
subgraph Ωi(a) = {b | d(a, b) = i} is called i-neighborhood of a in Γ. We set [a] = Γ1(a), a⊥ = {a} ∪ [a].
For a vertex subset S of a graph Γ we denote as Γ(S) the set ∩a∈S([a]− S).

Degree of an vertex a of Γ is the number of vertices in [a]. Graph Γ is called regular of degree k, if
the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, µ) if Γ
is regular of degree k on v vertices, and |[u]∩ [w]| is equal λ, if u adjacent to w, is equal µ, if d(u,w) = 2.
Amply regular graph of diameter 2 is called strongly regular.

By Km×n we denote the complete bipartite graph with m parties of order n. Graph on the set X ×Y
is called p× q-grid, if |X| = p, |Y | = q, and pairs (x1, y1) and (x2, y2) are adjacent if and only if x1 = x2

or y1 = y2. By mKn we denote the union of m isolated n-cliques.
A partial geometry pGα(s, t) is a geometry of points and lines such that every line has exactly s+ 1

points, every point is on t + 1 lines (with s > 0, t > 0) and for any antiflag (P, y) there are exactly α
lines zi containing P and intersecting y. In the case α = 1 we have generalized quadrangle GQ(s, t).

Point-graph of a geometry (P,L) of points and lines has P as a vertex set, and two vertices a, b are
adjacent if a, b belong to some line. Point-graph of partial geometry pGα(s, t) is strongly regular with
parameters v = (s+1)(1+st/α), k = s(t+1), λ = (s−1)+(α−1)t, µ = α(t+1). Strongly regular graph
with this parameters for some natural numbers α, s, t is called pseudogeometric graph for pGα(s, t).

A graph Γ is called t-izoregular, if for every i ≤ t and for every i-vertex subset S the number |Γ(S)| is
depend only from isomorphic type of the subgraph induced by S. A graph on v vertices is called absolute
izoregular, if it is (v − 1)-izoregular. Finally t-izoregular graph Γ is called exactly t-izoregular, if it is
not (t + 1)-izoregular. Cameron [1] proved that every 5-izoregular graph Γ is absolute izoregular and is
isomorphic pentagon, 3 × 3-grid, complete multipartite graph Kn×m or its complement. Further every
exactly 4-izoregular graph is pseudogeometric for pGr(2r, 2r3 + 3r2 − 1) or its complement. Let Izo(r)
be a pseudogeometric graph for pGr(2r, 2r3 + 3r2 − 1). For r = 1 we have the point graph of GQ(2, 4),
and for r = 2 we have MacLaughlin graph.

For every vertex a of a graph Izo(r) the subgraph Γ(a) is pseudogeometric for pGr−1(2r−1, r3 + r2−
r− 1). Makhnev [1] proved that pseudogeometric graph for pGr−1(2r− 1, r3 + r2 − r− 1) does not exist
for r = 3. Automorphisms of 2-neighborhood Σ of some vertex of Izo(3) and local subgraphs of Σ were
determined by M. Nirova, M. Isakova and A. Tokbaeva [3], [4], [5].

Graph Izo(4) has parameters (3159, 1408, 532, 704) and for any vertex a subgraph Σ = [a] is
pseudogeometric for pG3(7, 75) and has parameters (1408, 532, 156, 228). Further, for any vertex b ∈ Σ
subgraph ∆ = Σ(b) is pseudogeometric for pG2(6, 25) and has parameters (532, 156, 30, 52), subgraph
∆′ = Σ2(b) is strongly regular with parameters (875, 304, 78, 120). In this paper automorphisms of strongly
regular with parameters (532, 156, 30, 52) are determined.

Theorem. Let Γ be a strongly regular with parameters (532, 156, 30, 52), G = Aut(Γ), g is an element
of prime order p of G and Ω = Fix(g). Then π(G) ⊆ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29} and one of the
following holds:

(1) Ω is empty graph, either p = 19 andα1(g) = 152, or p = 7 and α1(g) = 210l − 28, or p = 2 and
α1(g) = 30l + 16;

(2) Ω is n-clique, either p = 3, n = 1 and α1(g) = 90l + 36, or p = 5, n = 2 and α1(g) = 150l − 20
or n = 7 and α1(g) = 150l − 30;

Yekaterinburg, Russia 57 August, 9-15, 2015



Abstraсts – Contributed Talks Groups and Graphs, Algorithms and Automata

(3) Ω is l-coclique, either p = 2 and α1(g) = 4m+ 152−60l, or p = 13 and α1(g) = 13(4s−30t−14),
where m = 13s− 1;

(4) Ω contains geodesic 2-way and p ≤ 23, p 6= 19.

This work was supported by the grant of Russian Science Foundation, project no. 15-11-10025.
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Spectral properties of Cayley graphs on the symmetric group Symn generated by transpositions have
studied intensively last years. In 2000 it was shown by J. Friedman [1] that the Cayley graph on Symn

with respect to a set of n − 1 transpositions has the smallest non-zero eigenvalue λ2 6 1, with equality
iff for some i we have T = {(i, j)|j 6= i}. The multiplicity of this eigenvalue is

mul(λ2) > n− 1. (1)

For example, if T = {(1, 2), (2, 3), . . . , (n − 1, n)} then we have the Bubble-sort graph whose spectral
properties were investigated by R. Bacher in [2].

In this paper we study spectral properties of the Star graph Sn that is the Cayley graph on Symn with
the generating set T = {(1, 2), (1, 3), . . . , (1, n)}. In 2009 A. Abdollahi and E. Vatandoost conjectured [3]
that the spectrum of Sn is integral, moreover it contains all integers in the range from −(n − 1) up to
n − 1 (with the sole exception that when n 6 3, zero is not an eigenvalue of Sn). This conjecture was
proved by R. Krakovski and B. Mohar [4] in 2012.

We investigate multiplicity of eigenvalues of the Star graph Sn. Using the standard representation
theory [5] their exact values were found for 4 6 n 6 13. The obtained data show an oscillating distribution
of eigenvalue multiplicities. One can assume that this behavior of multiplicities will be also kept for large
n. Let us note that typically the distribution of eigenvalue multiplicities for known distance-regular graphs
is unimodal. However, the Star graph is not distance-regular. It is also shown that the low bound (1) for
mul(λ2) is achieved only for 2 6 n 6 5 in Sn. The following result is given.

Theorem. The values ±(n− 2) are eigenvalues of Sn with multiplicity (n− 2)(n− 1).

Most of the talk is based on results from [6]. The work has been supported by RFBS Grant 15-01-05867
and Grant NSh-1939.2014.1 of President of Russia for Leading Scientific Schools.
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Let G be a finite group. Denote by π(G) the set of all prime divisors of the order of G. Prime graph
(or Gruenberg — Kegel graph) Γ(G) of G is defined as the graph with vertex set π(G), in which two
distinct vertices p and q are adjacent if and only if G contains an element of order pq. A group G is
called n-primary if |π(G)| = n. We denote the number of connected components of Γ(G) by s(G), and
the set of its connected components by {πi(G) | 1 ≤ i ≤ s(G)}; for the group G of even order believe
that 2 ∈ π1(G).

Kondrat’ev determined finite almost simple 5-primary groups and their Gruenberg — Kegel graphs [1].
The author together with A. S. Kondrat’ev [2] obtained a description of chief factors of the commutator
subgroups of finite non-solvable 5-primary groups G with disconnected Gruenberg–Kegel graph in the
case when G/F (G) is almost simple n-primary group for n ≤ 4. Our aim is to describe 5-primary groups
G with disconnected prime graph in the remaining cases. It is natural to begin the study by imposing
certain restrictions on the component π1(G). The result of this work is describing 5-primary groups G
with disconnected prime graph such that either π1(G) = {2}, or 3 6∈ π1(G) 6= {2} and 3 ∈ π(G).

We prove the following two theorems. Each of the items of these theorems is realizing.

Theorem 1. Let G be a finite 5-primary group and π1(G) = {2}. Then one of the following conditions
holds:

(1) G ∼= O(G)hS is Frobenius group, where O(G) is 4-primary abelian group and S is cyclic 2-group
or generalized quaternion group;

(2) G is Frobenius group with kernel O2(G) and 4-primary complement;
(3) G ∼= A h (B h C) is 2-frobenius group, where A = O2(G), B is cyclic 4-primary 2′-group and C

is cyclic 2-group;
(4) G ∼= L2(r), r ≥ 65537 is Mersenne or Ferma prime and |π(r2 − 1)| = 4;
(5) G = G/O2(G) ∼= L2(2m), where either m ∈ {6, 8, 9}, or m ≥ 11 is prime. If O2(G) 6= 1, then

O2(G) is a direct product of minimal normal subgroups of order 22m from G, each of these as G-module
is isomorphic to the natural GF (2m)SL2(2m)-module;

(6) G = G/O2(G) ∼= Sz(q), where q = 2p, p ≥ 7 and q − 1 primes, |π(q − ε
√

2q + 1)| = 2 and
|π(q + ε

√
2q + 1)| = 1 for ε ∈ {+,−}, 5 ∈ π(q − ε

√
2q + 1). If O2(G) 6= 1, then O2(G) is a direct product

of minimal normal subgroups of order q4 from G, each of these as G-module is isomorphic to the natural
GF (q)Sz(q)-module of dimension 4.

Theorem 2. Let G be a finite 5-primary group with disconnected prime graph, G = G/F (G) is almost
simple 5-primary group, 3 ∈ π(G) and 3 6∈ π1(G) 6= {2}. Then one of the following conditions holds:

(1) G is isomorphic to L2(53) or L2(173);
(2) G ∼= L2(p), where either p ≥ 65537 is Mersenne or Ferma prime and |π(p2 − 1)| = 4, or p ≥ 41

is prime, |π(p2 − 1)| = 4 and 3 ∈ π(p+1
2 );

(3) G is isomorphic to L2(3r) or PGL2(3r), where r is odd prime, |π(32r − 1)| = 4 and r 6∈ π(G);
(4) G ∼= L2(pr), where p ∈ {5, 17}, r is odd prime, |π(p2r − 1)| = 4, 3 ∈ π(p

r+1
2 ) and r 6∈ π(G).

The work was supported by the Russian Scientific Foundation (project No. 14-11-00061).
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The prime (or Gruenberg-Kegel) graph Γ(G) of a finite group G is an undirected simple graph whose
vertex set is the set π(G) of all prime divisors of |G| and two vertices p and q are adjacent if and only if
there exists an element of order pq in G. If |G| is even then we denote by π1(G) the connected component
of Γ(G) containing 2. It is very known (see, for example, [1,2]) that the prime graph of any finite simple
non-abelian group is not complete. We prove the following theorem which strengthen this result.

Theorem. Let G be a finite simple non-abelian group. Then there exist in the graph Γ(G) two
nonadjacent odd vertices which do not divide |Out(G)|, moreover it is possible to take such vertices
in π1(G), except when G is isomorphic to one of the following groups: M11, M22, J1, J2, J3, HiS,
An (n ∈ {5, 6, 7, 9, 12, 13}), A1(q) (q > 3), Aε2(q) (q = pm > 2, p is a prime, m ∈ N, ε ∈ {+,−} and either
π(q + ε1) = {2} or p divides 2m), 2A3(3), 2A5(2), C3(2), C2(q) (q > 2), D4(2), 2B2(q) (q = 22k+1 > 2),
G2(q) (q = 3k), U5(2).

This work was supported by the Russian Foundation for Basic Research (project No. 13-01-00469), the
Complex Program of UB RAS (project 15-16-1-5) and under the Agreement 02.A03.21.0006 of 27.08.2013
between the Ministry of Education and Science of the Russian Federation and Ural Federal University.
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In 2013 Noga Alon published the first pioneer work on the chromatic number of random Cayley
graphs [1]. He considered the typical behavior of the chromatic number of a random Cayley graph of
a given group of order n with respect to a randomly chosen set. This behavior depends on the group.
General, cyclic and abelian groups were considered by Noga Alon. As open problems, he suggested consider
more accurately the case of the symmetric group Symn.

In this talk we investigate bichromatic Cayley graphs Γ = Cay(Symn, S) on the symmetric group
Symn with a generating set S. The necessary and sufficient conditions of a Cayley graph Γ with the
chromatic number χ(Γ) = 2 are found.

Theorem 1. Let Γ = Cay(Symn, S) is a Cayley graph on the symmetric group Symn. Then Γ is
bichromatic if and only if the generating set S does not contain even permutations.

The proof is based on the classical Lagrange’s theorem in group theory and the Kelarev’s theorem [3],
which describes all finite inverse semigroups with bipartite Cayley graphs.

Theorem 2. Let a generating set S of a random Cayley graph Γ = Cay(Symn, S) consists of k
randomly chosen generators of Symn. If n > 2 and k < n!

2 , then Γ = Cay(Symn, S) is not, asymptotically
almost surely, bichromatic.

However, these results don’t give the conditions for a random Cayley graph Γ to be connected.

Open problem What are the necessary and sufficient conditions for Γ = Cay(Symn, S) to be connected,
where S is a randomly chosen generating set?

In a particular case, when the generating set S of Γ is defined by reversals, the necessary and sufficient
conditions of connectedness for Γ were found by Ting Chen and Steven Skiena in [2]. Let S consists of
all reversals of fixed length `. Then Γ = Cay(Symn, S) is connected if and only if ` ≡ 2(mod 4). In this
case |S| = n− ` and the number of such generating sets is equal to bn+1

4 c.
There are also two famous connected bichromatic Cayley graphs on the symmetric group known as

the Star and the Bubble-sort graphs. These graphs are used for modelling interconnections networks [4].
The work has been supported by RFBS Grant 15-01-05867 and Grant NSh-1939.2014.1 of President

of Russia for Leading Scientific Schools.
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On Cameron’s question about primitive permutation groups with stabilizer of two points
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Cameron formulated the following question (see [1], [3, question 9.69]). Assume that G is a primitive
permutation groups on a finite set X, x ∈ X and Gx acts regularly on the Gx-orbits Gx(y) containing y
(i.e. Gx induces on Gx(y) a regular permutation group). Is it true that this action is faithful, i.e., that
|Gx| = |Gx(y)|? Note that the question on the faithfulness of the action of a stabilizer Gx on a regular
suborbit Gx(y) was also treated earlier (see [5], [6], [7]).

It is clear that the regularity of the action of the group Gx on Gx(y) is equivalent to the property
Gx,y E Gx, and the equality |Gx| = |Gx(y)| is equivalent to the equality Gx,y = 1. Thus, Cameron’s
question is equivalent to the question on the fulfilment for an arbitrary primitive permutation group G
on a finite set X of the following property.

(Pr) If x ∈ X and y ∈ X \ {x}, then Gx,y E Gx implies Gx,y = 1.
Obviously, Cameron’s question is also equivalent to the question on the fulfilment for an arbitrary

finite group G of the following property.
(Pr*) If M1 and M2 are different conjugate maximal subgroups in G, then M1 ∩M2 E M1 implies

M1 ∩M2 E G.
In the present work (using [2]), we prove the following theorem.

Theorem. Let G be a primitive permutation group on a finite set X and x ∈ X. Assume that the
socle of G is not isomorphic to power of an exceptional group T of Lie type E8(q) with Tx of type (d) or
(e) from [4]. Then the permutation group G satisfies property (Pr). In particular, for such primitive
groups G, the answer to Cameron’s question is positive.
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The automorphism group of finite semifield

Olga Kravtsova
Siberian Federal University, Krasnoyarsk, Russia

A semifield is an algebraic structure 〈W,+, ◦〉, satisfying the following axioms:
1) 〈W,+〉 is abelian group;
2) 〈W ∗, ◦〉 is a loop;
3) x ◦ (y + z) = x ◦ y + x ◦ z and (y + z) ◦ x = y ◦ x+ z ◦ x for all x, y, z ∈W .
The projective plane π coordinatizing by semifield W is called a semifield plane. Let π be a semifield

plane of order pn, p be prime. We can represent the coordinatizing semifield of such a plane as a n-
dimensional linear space over Zp, with multiplication law

x ◦ y = xθ(y), x, y ∈W.

Here θ : W → GLn(p) ∪ {0} is a bijective mapping, satisfying the conditions:
1) θ(y + z) = θ(y) + θ(z) ∀y, z ∈W ;
2) θ(0, 0, . . . , 0, 0) = 0, θ(0, 0, . . . , 0, 1) = E (identity matrix).
We shall call the matrix set R = {θ(y)|y ∈W} a regular set.

Theorem. The bijective mapping x → xA, x ∈ W , is an automorphism of semifield W for A ∈
GLn(p) if and only if

A−1θ(y)A = θ(yA) ∀y ∈W.

Moreover, the matrix (
A 0
0 A

)
determines the collineation of semifield plane π, that fixes a triangle (0, 0), (0), (∞) and a line y = x.

We used the matrix representation of automorphism to construct the autotopism subgroup of semifield
plane and automorphism group of coordinatizing semifield of some small orders, odd and even. Also the
matrix representation of inner automorphisms [1] of finite semifield is determined.

The author was supported by Russian Fund of Fundamental Researches, grant 15-01-04897 A.
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An injective map from the set of maximum independent sets in a Doob graph
to the set of 4-ary distance-2 MDS codes

Denis Krotov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

Novosibirsk State University, Novosibirsk, Russia

The Cartesian product D(m,n)
def
= Shm×Kn

4 of m copies of the Shrikhande graph Sh (see the left part
of Fig. 1) and n copies of the complete graph Kq of order q = 4 is called a Doob graph if m > 0, while
D(0, n) is the Hamming graph H(n, 4) (in general H(n, q)

def
= Kn

q ). The Doob graph D(m,n) is a distance-
regular graph with the same parameters as H(2m+n, 4). It is easy to see that the independence number of
this graph is 42m+n−1. The maximum independent sets in the Hamming graphs are known as the distance-
2 MDS codes, or the Latin hypercubes (in the last case, one coordinate is usually considered as a function
of the other coordinates). It is natural to generalize these notions to the maximum independent sets in
Doob graphs; however, for generalized Latin hypercubes in D(m,n), we need at least one K4 coordinate,
i.e., n > 0. There are 4 trivial MDS codes in D(0, 1); 24 equivalent distance-2 MDS codes in D(0, 2)
(16 of them can be found in Fig. 1); 16 distance-2 MDS codes in D(1, 0) (see Fig. 1), which form two
equivalence classes.

The goal of the current correspondence is to describe a rather simple recursive way to map injectively
the set MDSm,n of distance-2 MDS codes in D(m,n) into MDS0,2m+n. At first, we define the map κ from
MDS1,0 into MDS0,2, see Fig. 1. This map has the following important property: two MDS codes M ′ and
M ′′ in D(1, 0) intersect if and only if their images κM ′ and κM ′′ intersect. It follows that κ:

κM
def
=
{

(x1, ..., xm, z1, z2, y1, ..., yn) ∈ D(m,n+ 2)
∣∣ (z1, z2) ∈ κ{v ∈ Sh | (x1, ..., xm, v, y1, ..., yn) ∈M}

}
maps MDSm+1,n into MDSm,n+2. Then, κm maps MDSm,n into MDS0,2m+n. A constructive
characterization of the class MDS0,2m+n can be found in [1]; using the map κm, it is possible to extract
some information on MDSm,n for arbitrary m. In particular, |MDSm,n| = 222m+n(1+o(1)) (by comparison,
the number of all vertex subsets in D(m,n) is 224m+2n

).

κ : →

Figure 1: The 16 maximum independent sets in Sh and the corresponding independent sets in K2
4

This research was funded by the Russian Science Foundation (grant No 14-11-00555).
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Compositional structure of groups isospectral go U3(3)

Yuri Lytkin
Siberian State University of Telecommunications and Informatics, Novosibirsk, Russia

In this work only finite groups are studied. The spectrum ω(G) of a group G is the set of its element
orders. By a section of G we mean a quotient group H/N , where N,H ≤ G and N EH. Groups G and
H are called isospectral, if ω(G) = ω(H). Let ω be a subset of natural numbers. Following [1], we call
a group G critical with respect to ω (or ω-critical), if ω coincides with the spectrum of G and does not
coincide with the spectrum of any proper section of G.

If a simple group L has infinitely many groups isospectral to L, then it is important to study critical
groups isospectral to L. In [2, 3] the complete description is given of critical groups isospectral to non-
abelian simple alternating and sporadic groups and also the special linear group SL3(3).

In this work we study groups critical with respect to the spectrum of the projective special unitary
group U3(3). In particular, we prove the following

Theorem. Let G be a group isospectral to U3(3) that contains a normal subgroup N , such that G/N '
PGL2(7). Then N is a 2-group and every G-chief factor of N is isomorphic to a 6-dimensional module
of the group PGL2(7). Also G = NH for some subgroup H ' PGL2(7). If in addition G is critical with
respect to ω(U3(3)), then |N | = 26.

Moreover, H has a representation 〈a, b, c | a2 = b3 = c2 = (ab)7 = (ac)2 = (bc)2 = [a, b]4 = 1〉 and if
we regard N as a vector space over GF (2) then a base of N can be chosen in such a way that the action
of H on N is defined by the following matrices:

a ∼

 1 · · · · ·
· 1 · · · ·
1 · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · 1 · 1

 , b ∼

 · 1 · · · ·
· · 1 · · ·
1 · · · · ·
· · · · · 1
· · · 1 · ·
· · · · 1 ·

 , c ∼

 · · · 1 · ·
· · · · 1 ·
· · · · · 1
1 · · · · ·
· 1 · · · ·
· · 1 · · ·

 .

This work was partially supported by RFBR Grants 13-01-00505 and 14-01-90013.
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On some groups of period 12

Daria Lytkina
Siberian State University of Telecommunications and Information Sciences, Novosibirsk, Russia

Victor Mazurov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

In this talk we consider groups of period 12. In particular, we find conditions that guarantee local
finiteness of such groups.

It is well-known that groups of period 4 and period 6 are locally finite [1–4]. In [1,5–7] local finiteness
of groups of period 12 was proved under some additional conditions.

Our goal is to reduce a question whether a group of period 12 is locally finite to a question whether
its subgroups generated by three elements of order 3 are finite. Our main result is stated in the following
theorem.

Theorem. A group of period 12 is locally finite if and only if every subgroup H of G is finite, given
that H satisfies one of the following conditions.

1. H is generated by an element a of order 3 and elements b and c of order 2, such that (ab)3 =
(bc)3 = 1.

2. H is generated by elements a and b of order 3 and an element c of order 2, such that (ac)2 = 1.
In particular, a group of period 12 is locally finite if every of its subgroups generated by three elements

of order 3 is finite.

The work was supported by Russian Foundation for Basic Research, Grants 13-01-00505 and 14-01-
90013.
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Strongly regular graphs with nonprincipal eigenvalue 5 and its extensions

Alexander Makhnev
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We consider nondirected graphs without loops and multiple edges. For vertex a of a graph Γ the
subgraph Ωi(a) = {b | d(a, b) = i} is called i-neighborhood of a in Γ. We set [a] = Γ1(a), a⊥ = {a} ∪ [a].

Degree of an vertex a of Γ is the number of vertices in [a]. Graph Γ is called regular of degree k, if
the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, µ) if Γ
is regular of degree k on v vertices, and |[u]∩ [w]| is equal λ, if u adjacent to w, is equal µ, if d(u,w) = 2.
Amply regular graph of diameter 2 is called strongly regular.

A partial geometry pGα(s, t) is a geometry of points and lines such that every line has exactly s+ 1
points, every point is on t + 1 lines (with s > 0, t > 0) and for any antiflag (P, y) there are exactly α
lines zi containing P and intersecting y. In the case α = 1 we have generalized quadrangle GQ(s, t).

Jack Koolen suggested the problem investigation of distance-regular graphs whose local subgraphs
are strongly regular graphs with the second eigenvalue at most t for some natural number t. In [1] the
solving of Koolen problem in the case t = 3 was began.

We begin the investigation of the case t = 5.

Strongly regular graph Γ with the second eigenvalue m− 1 is called exceptional if Γ does not belong
the following list:

(1) the union of isolated m-cliques;
(2) pseudogepmetric graph for pGt(t+m− 1, t);
(3) the complement of pseudogepmetric graph for pGm(s,m− 1);
(4) conference graph with parameters (4µ+ 1, 2µ, µ− 1, µ),

√
4µ+ 1 = m− 1.

In this paper it is obtained reduction to locally exceptional graphs.

Theorem. Let Γ be a distance-regular graph with strongly regular local subgraphs having the second
eigenvalue t, 4 < t ≤ 5, u is a vertex of Γ. Then [u] is an exceptional strongly regular graph, or one of
the following holds:

(1) [u] is the union of isolated 6-cliques;
(2) [u] is the pseudogepmetric graph for pGs−5(s, s− 5) and either

(i) Γ is strongly regular graph with parameters (176, 49, 12, 14), (209, 100, 45, 50),
(806, 625, 480, 500), (1464, 1225, 1020, 1050), and s = 6, 9, 24, 34 respectively, or

(ii) s = 6 and Γ is Johnson graph J(14, 7), or its standard quotient or graph with intersection array
{49, 36, 1; 1, 12, 49}, or

(iii) s = 7 and Γ has intersection array {64, 42, 1; 1, 21, 64}, or
(iv) s = 10 and Γ is Taylor graph;

(3) [u] the complement of pseudogepmetric graph for pG6(s, 5), Γ is strongly regular graph with
parameters (259, 42, 5, 7), (356, 85, 30, 17), and s = 8, 6 respectively, or s = 12 and Γ is Taylor graph;

(4) [u] is the conference graph with parameters (4l+1, 2l, l−1, l), l ∈ {21, 22, 24, 25, 27, 28, 29, 30} and
Γ is Taylor graph.

This work was supported by the grant of Russian Science Foundation, project no. 15-11-10025.
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Automorphisms of distance-regular graph with intersection array
{204, 175, 48, 1; 1, 12, 175, 204}
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We consider nondirected graphs without loops and multiple edges. For vertex a of a graph Γ the
subgraph Ωi(a) = {b | d(a, b) = i} is called i-neighborhood of a in Γ. We set [a] = Γ1(a).

Degree of an vertex a of Γ is the number of vertices in [a]. Graph Γ is called regular of degree k, if
the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, µ) if Γ
is regular of degree k on v vertices, and |[u]∩ [w]| is equal λ, if u adjacent to w, is equal µ, if d(u,w) = 2.
Amply regular graph of diameter 2 is called strongly regular.

Distance-regular graph Γ with intersection array {204, 175, 48, 1; 1, 12, 175, 204} is AT4(4, 6, 5)-
graph [1]. Antipodal quotient Γ̄ has parameters (800, 204, 28, 60).

In this paper automorphisms of distance-regular graph Γ with intersection array {204, 175, 48, 1; 1, 12,
175, 204} and of antipodal quotient Γ̄ are investigated.

Theorem 1. Let Γ be a strongly regular with parameters (800, 204, 28, 60), G = Aut(Γ), g be an
element of prime order p of G and Ω = Fix(g). Then π(G) ⊆ {2, 3, 5, 7, 17} and one of the following
holds:

(1) Ω is empty graph, either p = 5, α1(g) = 200l, or p = 2 and α1(g) = 40m;
(2) Ω is n-clique, either p = 17, n = 1 and α1(g) = 204, or p = 5, n = 5 and α1(g) = 200s + 20 or

p = 7, n = 2 and α1(g) = 280t+ 168;
(3) Ω is l-coclique, either p = 3, l = 3m+ 2 and α1(g) = 120t+ 12m+ 48, or p = 2, α1(g) = 80t+ 4l,

where l = 8, 10, ..., 92;
(4) Ω is the union of m isolated 5-cliques, 2 ≤ m ≤ 5, α1(g) = 200s+ 20m;
(5) Ω contains geodesic 2-way and either

(i) p = 3, Ω is the union of 3m+ 1 isolated subgraphs K4×2 and α1(g) = 96m+ 120t+ 72, or
(ii) p = 2, |Ω| = 2l ≤ 240, λΩ = 0, 2, ..., 26, degrees of vertices in Ω equal 0, 2, ..., 34 and α1(g) =

80t+ 8l.

Theorem 2. Let Γ be a distance-regular graph Γ with intersection array
{204, 175, 48, 1; 1, 12, 175, 204}, G = Aut(Γ), g be an element of prime order p of G and Ω = Fix(g)
contains s vertices in t antipodal classes. Then π(G) ⊆ {2, 5, 7, 17} and one of the following holds:

(1) Ω is empty graph, either p = 5, α1(g) = 200(4+m−l), α2(g) = 1000l and α3(g) = 200(16−m−4l),
or p = 2, α1(g) = 80(4 +m− l), α2(g) = 400l and α3(g) = 80(46−m− 4l);

(2) g induces trivial automorphism of antipodal quotient Γ̄, p = 5 and α4(g) = v;
(3) Ω is the antipodal class of Γ, p = 17, α1(g) = 340 + 680n, α2(g) = 2975 and α3(g) = 680(1− n);
(4) Ω is the union of two antipodal classes, p = 7, α1(g) = 910 + 280n − 70l, α2(g) = 350l, α3(g) =

3080− 280l − 280n, l = 1, 5, 9;
(5) p = 5, t = 5, s = 5, α1(g) = 700 + 200(m− l), α2(g) = 1000l− 125 and α3(g) = 200(17−m− 4l).

Corollary. Let Γ be a distance-regular graph Γ with intersection array {204, 175, 48, 1; 1, 12, 175, 204}.
Then group G = Aut(Γ) is solvable.

This work was supported by the grant of Russian Science Foundation, project no. 15-11-10025.
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Strongly regular graphs with strongly regular local subgraphs having second eigenvalue 5
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We consider nondirected graphs without loops and multiple edges. For vertex a of a graph Γ the
subgraph Ωi(a) = {b | d(a, b) = i} is called i-neighborhood of a in Γ. We set [a] = Γ1(a), a⊥ = {a} ∪ [a].

Degree of an vertex a of Γ is the number of vertices in [a]. Graph Γ is called regular of degree k, if
the degree of any vertex is equal k. The graph Γ is called amply regular with parameters (v, k, λ, µ) if Γ
is regular of degree k on v vertices, and |[u]∩ [w]| is equal λ, if u adjacent to w, is equal µ, if d(u,w) = 2.
Amply regular graph of diameter 2 is called strongly regular.

A partial geometry pGα(s, t) is a geometry of points and lines such that every line has exactly s+ 1
points, every point is on t + 1 lines (with s > 0, t > 0) and for any antiflag (P, y) there are exactly α
lines zi containing P and intersecting y. In the case α = 1 we have generalized quadrangle GQ(s, t).

Jack Koolen suggested the problem investigation of distance-regular graphs whose local subgraphs
are strongly regular graphs with the second eigenvalue at most t for some natural number t. Recently
this problem was solved for t = 3. At present near finishing the case t = 4. We begin the investigation of
the case t = 5. In [1] was obtained the reduction to the exceptional local subgraphs. Let Γ be a distance
regular graph of diameter d ≥ 3. Then c2 ≤ b1. A. Makhnev and D. Paduchikh found parameters of
exceptional strongly regular graphs with the second eigenvalue 5, which may be local subgraphs in amply
regular graphs with µ ≤ b1.

In this paper it is determined parameters of strongly regular graphs with strongly regular local
subgraphs having the second eigenvalue 5.

Theorem. Let Γ be a strongly regular graph with strongly regular local subgraphs having the second
eigenvalue 5. Then Γ has parameters (176, 49, 12, 14), (209, 100, 45, 50), (259, 42, 5, 7), (356, 85, 30, 17),
(806, 625, 480, 500), (1464, 1225, 1020, 1050) or local subgraphs are exceptional and Γ has parameters

(1) (100, 36, 14, 12), (100, 77, 60, 56), (189, 100, 55, 50), (169, 112, 75, 72), (330, 105, 40, 30),
(345, 120, 35, 45), (400, 210, 110, 110), (512, 133, 24, 38), (550, 225, 80, 100), (560, 325, 180, 200),
(605, 280, 117, 140), (680, 175, 30, 50), (846, 260, 70, 84), (946, 273, 80, 78), (990, 345, 120, 120),

(2) (1003, 300, 65, 100), (1016, 259, 42, 74), (1036, 375, 110, 150), (1080, 260, 70, 60),
(1090, 441, 152, 196), (1122, 209, 16, 44), (1199, 550, 225, 275), (1200, 605, 280, 330), (1458, 329, 40, 84),
(1520, 385, 60, 110), (1577, 400, 105, 100), (1976, 175, 30, 14);

(3) (2025, 680, 175, 255), (2032, 1275, 770, 850), (2034, 437, 100, 92), (2209, 624, 161, 182),
(2420, 885, 260, 360), (2508, 1199, 550, 594), (2809, 540, 77, 110), (3250, 1305, 440, 580),
(3481, 960, 245, 272), (3844, 630, 68, 110), (3872, 343, 54, 28), (3888, 1625, 580, 750), (3950, 385, 60, 35);

(4) (4256, 259, 42, 14), (4418, 637, 96, 91), (4496, 1015, 150, 252), (4512, 650, 55, 100),
(4706, 3625, 2760, 2900), (4941, 1520, 385, 504), (5074, 969, 176, 187), (5625, 1520, 385, 420),
(5820, 2783, 1270, 1386), (7139, 3250, 1305, 1625), (7280, 1015, 150, 140), (9801, 1600, 205, 272).

This work was supported by the grant of Russian Science Foundation, project no. 15-11-10025.
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On the realizability of some graphs as Gruenberg–Kegel graphs of finite groups
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We use the term “group” while meaning “finite group” and the term “graph” while meaning “undirected
graph without loops and multiple edges”.

Let G be a group. Denote by π(G) the set of all prime divisors of the order of G and by ω(G) the
spectrum of G, i.e., the set of all its element orders. The set ω(G) defines the Gruenberg–Kegel graph
(or the prime graph) Γ(G) of G; in this graph, the vertex set is π(G) and different vertices p and q are
adjacent if and only if pq ∈ ω(G).

We say that a graph Γ with |π(G)| vertices is realizable as the Gruenberg–Kegel graph of a group G
if there exists a marking the vertices of Γ by different primes from π(G) such that the marked graph is
equal to Γ(G). A graph Γ is realizable as the Gruenberg–Kegel graph of a group if Γ is realizable as the
Gruenberg–Kegel graph of an appropriate group G.

The following problem arises.

Problem. Let Γ be a graph. Is Γ realizable as the Gruenberg–Kegel graph of a group?

Of course, in general, the problem has negative solution. For example, the graph consisting of five
pairwise non-adjacent vertices (5-coclique) is not realizable as the Gruenberg–Kegel graph of a group.

In this talk, we will tell on the realizability of some graphs as Gruenberg–Kegel graphs of groups. In
particular, we prove the following theorem.

Theorem. Let Γ be a complete bipartite graph Km,n, where m ≤ n. Then Γ is realizable as the
Gruenberg–Kegel graph of a group if and only if m+ n ≤ 6 and (m,n) 6= (3, 3).
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The distribution of cycles of length O(n) in the Star graph

Alexey Medvedev
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

Central European University, Budapest, Hungary

The Star graph Sn = Cay(Symn, ST ), n > 2 is a Cayley graph on the symmetric group Symn with
the generating set of transpositions ST = {ti ∈ Symn, 2 6 i 6 n} exchanging i’th element of the
permutation with the first. Graph Sn, n > 3, is bipartite, therefore contains only even cycles of lengths
Cl, where 6 6 l 6 n! [1] and has the diameter D = b 3(n−1)

2 c.
The current work continues the study of cyclic structure of the Star graph, started in [2], under

a different approach. The distribution and the structure of vertices at each distance layer d, where
1 6 d 6 D, from the identity vertex is known [3]. We employ this result to study the number of cycles of
lengths 2d, 3 6 d 6 D, constructed from two non-intersecting shortest paths to the vertex at distance d
from the identity vertex. The study of such cycles is closely related to the method proposed to solve the
First Passage Percolation problem on graphs [4, 5].

Any permutation π ∈ Symn can be represented uniquely in terms of non-intersecting cycles, i.e.

π = (1π1
2 . . . π

1
l1)(π2

1 . . . π
2
l2) . . . (πk1 . . . π

k
lk

).

Denote the cycle of length l containing the element ”1” as l−CO and not containing it as l−CN , then
the vertices on the distance layer d may have either

1. only a (d+ 1)− CO;

2. an m − CO, 1 6 m 6 d − 2 and k > 1 items of li − CN , where 1 6 i 6 k, such that d =
k + (m− 1) +

∑k
i=1 li.

The following theorems describe the distribution of distinct cycles in the Star graph Sn for 3 6 d 6 D.

Theorem 1. The number of cycles of length 2d passing through the vertices with 1−CO and k > 2 items
of li − CN , over all k +

∑k
i=1 li = d, is

NC1 = O
(
k!(d− 3k − 2)4k−2 + k!(d− 3k − 2)3k−1

)
(n− 1) . . . (n− d+ k).

Theorem 2. The number of cycles of length 2d passing through the vertices with m − CO and k > 2
items of li − CN , over all m− 1 + k +

∑k
i=1 li = d, is

NC2
= O

(
(k!)2(d− 3k − 3)4k−2

)
(n− 1) . . . (n− d+ k).

The work has been supported by RFBS Grant 15-01-05867 and Grant NSh-1939.2014.1 of President
of Russia for Leading Scientific Schools.
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Invariants of virtual links
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Virtual knot theory has been introduced by Kauffman [1] as a generalization of the classical knot
theory. Virtual knots (and links) are represented as generic immersions of circles in the plane (virtual link
diagrams) where double points can be classical (with the usual information on overpasses and underpasses)
or virtual. Virtual link diagrams are equivalent under ambient isotopy and some types of local moves
(generalized Reidemeister moves).

Using virtual generalized Reidemeister moves we can introduce a notion of "virtual"braids. Virtual
braids on n strands form a group denoted by V Bn. The relation between virtual braids and virtual knots
(and links) are completely determined by a generalization of Alexander and Markov Theorem [2,3]. It is
worth to mention that for virtual braids an Alexander-like theorem states that any virtual link can be
represented as the closure of a virtual braid.

In the classical case it is known that the braid group embeds into Aut(Fn) by Artin representation
which is a local one. Wada [6] classified all local representations of the braid group Bn into Aut(Fn).
There are four types. It is proved [7] that these representations are faithful.

Proposition For every Wada representation

wr1, w2, w3, w4 : Bn → AutFn, r ∈ Z

it is possible to construct the corresponding representation of the virtual braid group

W r
1 ,W2,W3,W4 : V Bn → AutFn+1, r ∈ Z,

such that the restriction each of them onto Bn is coincide with the corresponding Wada representation,
i.e.

Wk|Bn
= wk, k = 1, 2, 3, 4.

Analogously to the way shown in [4] we introduce the notion of the group of the virtual link G(vL)

for representations of the virtual braid group Wk, k = 1, . . . , 4. Let vL = β̂v be a closure of the virtual
braid, where β̂v ∈ V Bn. We define

Gk(vL) = 〈x1, x2, . . . , xn, y ‖ xi = Wk(βv)(xi), i = 1, 2, . . . , n〉, k = 1, . . . , 4.

Theorem. The constructed groups Gk(vL), k = 1, . . . 4, are invariants of the virtual link vL.

Acknowledgements. The research was supported by the Russian-Chinese grant (14-01-91161).
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Three-dimensional homogeneous spaces with invariant affine connections
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Let (G,M) be a three-dimensional homogeneous space. We fix an arbitrary point o ∈ M and denote
by G = Go the stationary subgroup of o. Since we are interested only the local equivalence problem, we
can assume without loss of generality that both G and G are connected. Then we can correspond the pair
(ḡ, g) of Lie algebras to (G,M), where ḡ is the Lie algebra of G and g is the subalgebra of ḡ corresponding
to the subgroup G. This pair uniquely determines the local structure of (G,M), that is two homogeneous
spaces are locally isomorphic if and only if the corresponding pairs of Lie algebras are equivalent. A pair
(ḡ, g) is effective if g contains no non-zero ideals of ḡ, a homogeneous space (G,M) is locally effective if
and only if the corresponding pair of Lie algebras is effective.

An isotropic g-module m is the g-module ḡ/g such that

x.(y+g) = [x, y]+g.

The corresponding representation λ : g → gl(m) is called an isotropic representation of (ḡ, g). The pair
(ḡ, g) is said to be isotropy-faithful if its isotropic representation is injective. Invariant affine connections
on (G,M) are in one-to-one correspondence [1] with linear mappings Λ: ḡ→ gl(m) such that Λ|g = λ and
Λ is g-invariant. We call this mappings (invariant) affine connections on the pair (ḡ, g). If there exists at
least one invariant connection on (ḡ, g) then this pair is isotropy-faithful [2]. We find all of this pairs. The
curvature and torsion tensors of the invariant affine connection Λ are given by the following formulas:

R : m ∧m→ gl(m), (x1+g) ∧ (x2+g) 7→ [Λ(x1),Λ(x2)]−Λ([x1, x2]);

T : m ∧m→ m, (x1+g) ∧ (x2+g) 7→ Λ(x1)(x2+g)−Λ(x2)(x1+g)− [x1, x2]m.

We restate the theorem of Wang on the holonomy algebra of an invariant connection: the Lie algebra
of the holonomy group of the invariant connection defined by Λ : ḡ→ gl(3,R) on (ḡ, g) is given by

V + [Λ(ḡ), V ] + [Λ(ḡ), [Λ(ḡ), V ]] + . . . ,

where V is the subspace spanned by {[Λ(x),Λ(y)]− Λ([x, y])|x, y ∈ ḡ}.
We describe all local three-dimensional homogeneous spaces, allowing affine connections, it is

equivalent to the description of effective pairs of Lie algebras, and all invariant affine connections
on the spaces together with their curvature, torsion tensors and holonomy algebras. We use the
algebraic approach for description of connections, methods of the theory of Lie groups, Lie algebras
and homogeneous spaces.

The results of work can be used in research work on the differential geometry, differential equations,
topology, in the theory of representations, in the theoretical physics. In particular, the results can find
practical application in general theory of relativity, which, with mathematical point of view, is based on
the geometry of the curved spaces, in the nuclear physics and physics of elementary particles that are
associated with geometric interpretation of equations. Methods stated in the work, can be applied for
the analysis of physical models, and algorithms classification of homogeneous spaces, affine connections
on these spaces, curvature and torsion tensors, holonomy algebras can be computerized and used for the
decision of similar problems in large dimensions.
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On a generalization of relations schemas, related to groups U3(q) and 2G2(32l+1)

Ildar Mukhametyanov
Lysva Branch of Perm National Research Polytechnic University, Lysva, Russia

Let X be a finite set, Ri (i = 0, 1, . . . , d) – binary relations on X, that satisfy conditions of symmetric
commutative associative scheme of relations on d classes (see definitions in [1]), except condition of
constancy number of intersections p1

ij . Pair (X, {Ri}{06i6d}) = X (X) is called scheme, Γ(i) = (X,Ri) –
graph of i-th relation. Scheme X (X) is called scheme of cliques if:

1. Graph Γ(1) of 1st relation is disconnected with n+ 1 connected components – cliques K1, K2, . . . ,
Kn+1 with d− 1 vertices each.

2. If x is fixed vertex of clique Ks, Kt 6= Ks, y iterates over vertices from Kt, then in (x, y) ∈ Ri index
i iterates over indices from 2, 3, . . . , d.

If scheme of cliques satisfies the additional condition
3. If i, j, k and s, t, l are arbitrary sets of pairwise distinct indices from {2, 3, . . . , d}, then pkij = plst,

pkii = plss, piii = psss, and p1
ij ∈ {0, r}, r 6= 0,

then it called scheme of cliques with the absolute number of intersections.
In [2] was announced existence of these schemes on the class X of conjugate elements of prime order

p from centers of p-Sylow subgroups in group G ∈ {L2(q), Sz(q), U3(q)} (with even q > 4 in last case)
with q = pm, where p is prime. Also was announced distance-regularity with array of intersections
{n, n−piii−1, 1; 1, pkii, n} of their graphs Γ(i) i-th relations with i ∈ {2, 3, . . . , d}, k 6= i, where pkii = piii =
(n− 1)/(d− 1). The following theorem was proved.

Theorem. If G ∈ {U3(q),2G2(q)}, q = pm – degree of odd prime number p with q = 32l+1 in case
G =2 G2(q), X – class of conjugate elements of order p from centers of p-Sylow subgroup of group G,
then on X can be defined relations Ri (i = 0, 1, . . . , d), such that (X, {Ri}{06i6d}) – scheme of cliques
with d = q, n = q3 и pkij = pkii = piii = 2(q2 + q + 1) for all i, j, k ∈ {2, 3, . . . , d}.
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Formations of finite groups and Hawkes graph
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Alexander Vasil’ev
F. Skorina Gomel State University, Gomel, Belarus

All groups considered are finite. There have been a lot of papers recently in which with every finite
group associates certain graph. The considered problem was to analyze the relations between the structure
of a group and the properties of its graph. This trend goes back to 1878 when A. Cayley [1] introduced
his graph.

Let π(G) be the set of prime divisors of |G|. Recall [2] that the Gruenberg-Kegel or the prime graph Γp
of a group G is the graph with the vertex set π(G) and (p, q) is an edge if and only if G contains element
of order pq. This graph is connected to the problem of recognition of groups by their graph. Recall that
a group G is called recognizable by the prime graph if Γp(G) = Γp(H) implies H ' G for any group H.
There are many non-isomorphic groups with nontrivial solvable radical and the same prime graph. That
is why of prime interest (for example see [3]) is this problem only for simple and almost simple groups.
In this paper we will consider the recognition problem up to a class of groups.

Definition 1. A function Γ : {groups} → {graphs} is called graph function.

Definition 2. Let Γ be a graph function and X be a class of groups. We shall say that X is recognized
by Γ if from G1 ∈ X and Γ(G1) = Γ(G2) it follows that G2 ∈ X.

Problem 1. (a) Let Γ be a graph function. Describe all group classes (formations, Fitting classes,
Schunk classes) that are recognizable by Γ.

(b) Let X be a class of groups (formation, Fitting class, Schunk class). Find graph functions Γ that
recognize X.

T. Hawkes [4] in 1968 considered a directed graph of a group G whose set of vertices is π(G) and
(p, q) is an edge if and only if q ∈ π(G/Op′,p(G)). In particular he showed that a group G has a Sylow
tower for some linear order φ if and only if its graph has not got circuits. We shall call this graph Hawkes
graph and will denote it ΓH(G).

Theorem 1. Let F be a formation of groups. Then F is recognized by ΓH if and only if F = LF (f) is
a local formation where f is formation function defined as follows: f(p) = Gf(p) if p ∈ π(F) and f(p) = ∅
otherwise.
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Generalized supersoluble finite groups and mutually permutable products
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Only finite groups are considered. In the paper [1] V. A. Vedernikov introduced the notion of c-
supersoluble group. Recall that a group G is called c-supersoluble if G has a chief series whose chief factors
are simple. In [2] A.F. Vasil’ev and T. I. Vasil’eva continued studying of c-supersoluble groups using the
method of composition satellites. D. Robinson established the structural properties of c-supersoluble
groups in the paper [3].

In [4] authors introduced the notion of Jc-supersoluble group that is local analogue of c-supersoluble
group. Let J is a some class (possibly empty) of simple groups. We say that a group G is a J-group if the
set KG of all composition factors of G is contained in J . Group G is called Jc-supersoluble if any chief
J-factor of G is a simple group. A group G is called quasinilpotent (J-quasinilpotent) if for every chief
factor (J-factor) H/K of G and every x ∈ G, x induces an inner automorphism on H/K.

In the [5] some properties of the products of normal Jc-supersoluble subgroups have been established.
In this report we studied the mutually permutable products of Jc-supersoluble groups. Recall [6, p. 149]
that group G = HK is called the product of mutually permutable subgroups H and K, if H permutes
with every subgroups of K and K permutes with every subgroups of H.

Theorem 1. Let the group G = HK be the product of the mutually permutable subgroups H and K.
If G is an Jc-supersoluble group, then H and K are both Jc-supersoluble groups.

Theorem 2. Let the group G = HK be the product of the mutually permutable subgroups H and K.
If H is an Jc-supersoluble group and K is J-quasinilpotent, then G is an Jc-supersoluble group.

Theorem 3. Let the group G = HK be the product of the mutually permutable subgroups H and K.
If H and K are Jc-supersoluble groups and G′, the derived subgroup of G, is J-quasinilpotent, then G is
an Jc-supersoluble group.

Reference

[1] V. A. Vedernikov, On some classes of finite groups // Doklady Akademii nauk BSSR. 1988. Vol 10, no. 2.
P. 872–875 (in Russian).

[2] A. F. Vasil’ev, T. I. Vasil’eva, On finite groups whose principal factors are simple groups // Russian Math.
(Izvestiya VUZ. Matematika). 1997. Vol. 11. P. 10–14.

[3] D. J. S. Robinson, The structure of finite groups in which permutability is a transitive relation // J. Austral.
Math. Soc. 2001. Vol. 70. P. 143–149.

[4] A. F. Vasil’ev, T. I. Vasil’eva, On finite groups with specified properties of chief series // Thesis of the
Int. Scient. Conf. “Discrete Math., Algebra and Their Applications”. Minsk: Inst. Math. NAS Belarus, 2009.
P. 12–14 (in Russian).

[5] E. N. Myslovets, On products of normal generalized supersolvable subgroups of finite groups // Proc. F.
Scorina Gomel State University. 2012. Vol. 75, no. 6. P. 163–167 (in Russian).

[6] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups. Berlin/New York: Walter
de Gruyter, 2010.

August, 9-15, 2015 78 Yekaterinburg, Russia



Groups and Graphs, Algorithms and Automata Abstraсts – Contributed Talks

On the pronormality and strong pronormality of Hall subgroups
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Throughout a set of primes is denoted by π. A subgroup H of G is called a π-Hall subgroup, if H is
a π-group (i.e. all its prime divisors are in π), while the index of H is not divisible by primes from π. A
subgroup is said to be a Hall subgroup if it is a π-Hall subgroup for some set of primes π. A subgroup H
of G is called pronormal, if H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G.

In Kourovka Notebook recorded the next problem [1, 18.32]: is every Hall subgroup of a finite group
pronormal in its normal closure? The negative solution gives by the following

Theorem. Let a set of primes π be such that

(1) there exists a simple group X which contains more than one class of conjugated π-Hall subgroups;

(2) there exists a simple group Y such that it contains a π-Hall subgroup which is not equal to self
normalizer in Y .

Thus in the regular wreath product G = X oY exists a not pronormal π-Hall subgroup, normal closure
of which is equal to G.

For example, set {2, 3} satisfies theorem conditions: group X = L3(2) contains two classes of
conjugated {2, 3}-Hall subgroups and group Y = L2(16) contains {2, 3}-Hall subgroup which is not equal
to self normalizer in Y .

A subgroup H of G is called strongly pronormal, if, for each K ≤ H and every g ∈ G, the subgroup
Kg is conjugate with a subgroup of H (but not necessary with K) by an element from 〈H,Kg〉.

Also a negative solution of the problem [1, 17.45(б)] issue was obtained: in a finite simple group, are
Hall subgroups always strongly pronormal?

More specifically, it was shown that S10(7) contains a {2, 3}-Hall subgroup, which is not strongly
pronormal. Note that there are not known examples of pronormal Hall subgroups which are not strongly
pronormal before.

The work is supported by Russian Science Foundation (project 14-21-00065).
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Perfect k-colorings of infinite circulant graphs with a continuous set of distances
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Consider an infinite graph Ci∞(d1, d2, d3, ..., dn), whose set of vertices is the set of integers, and two
vertices are adjacent if they are on the distance d ∈ {d1, d2, d3, ..., dn}. Let us call it an infinite circulant
graph. Also we consider a finite graph Cit(d1, d2, d3, ..., dn) with the set of vertices coinciding with the
set Zt and for each vertex v the multiset of incident edges is {(v, v + di mod t)|i = 1, 2, ..., n}. There is a
natural homomorphism from the set of vertices of the graph Ci∞(d1, d2, d3, ..., dn) on the set of vertices
of the graph Cit(d1, d2, d3, ..., dn) corresponding with the homomorphism from Z to Zt.

Let k be a positive integer. A k-coloring of vertices of a graph G = (V,E) is a map ϕ : V → {1, 2, ..., k}.
If ϕ(v) = s for some vertex v, then s is the color of v.

A k-coloring of vertices is called perfect, if for each i, j = 1, 2, ..., k are not necessarily different there
is an uniquely defined non-negative integer αij which is equal to the number of vertices of the color j in
the neighborhood of each vertex of the color i. The period T of a coloring is a sequence γ1γ2...γr, where
γi = ϕ(vm+i) for some number m, and ϕ(vl) = ϕ(vl+jr) for every l and j. The number r is the length of
the period T . It is clear that the coloring of a regular graph is uniquely defined by its period.

Perfect 2-colorings of circulant graphs are considered in [1,2]. We are interested in so-called circulant
graphs with a continuous set of distances, i.e. in ones with the property di = i, i = 1, 2, 3, ..., n. The
fool description of 2-colorings of graphs Ci∞(n) = Ci∞(1, 2, ..., n) for an arbitrary positive integer n is
given in [2]. A description of colorings with k colors for k ≥ 3 presents severe difficulties, in particular,
the natural homomorphism from n-dimensional grid Zn on Ci∞(n) shows that the problem is rather
complicate.

Here we present the main result:

Theorem Let k, n be positive integers. The set of perfect colorings of a graph Ci∞(n) contains all
perfect colorings of graphs Cit(n) for t = 2n, 2n+ 1, 2n+ 2 and the following ones:
1. 123...k;
2. 123...(k − 1)k(k − 1)...32;
3. 123...(k − 1)kk(k − 1)...32;
4. 123...(k − 1)kk(k − 1)...321.

It should be noted that last four colorings in the theorem are perfect for every n.
We conjecture that there are no other perfect colorings of the Ci∞(n).
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On Waterman’s lattices
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By finite lattice L can be determined ordinary graph 〈L,∼〉, where a ∼ b means that a covers b or b
covers a in the lattice L. Obviously, Aut〈L,∼〉 ⊇ Aut〈L,�〉. In the monograph of G. Birkhoff [1] posed the
problem №6: “Determine all finite lattices in which every graph–automorphism is a lattice–automorphis”
(A. G. Waterman). We call such finite lattices is Waterman’s lattices.

In [2] proved a theorem that every finite lattice is embeddable into the Waterman’s lattice.
We prove the following

Theorem. Any finite lattice is a homomorphic image of a Waterman’s lattice.

These theorems indicate on the universalism and complexity of the Waterman’s lattice class.
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On Some Variants of the Post Correspondence Problem
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The Post correspondence problem (PCP) is well known and one of the most useful undecidable
problems [1, 2]. The undecidability of PCP was shown in [3]. A large number of variants of the problem
have been considered.

Some variants of PCP are decidable. In particular, we can mention Marked PCP [4], PCP for 2
rules [5], PCP over the unary alphabet [6], silly Post correspondence problem (SPCP) [2], Post embedding
problem [7], and regular Post embedding problem [7]. Also, there are a number of polynomial formulations
of PCP with bounded length of the word [6, 8–11].

It should be noted that SPCP is one of the simplest variants of PCP. In particular, SPCP can be
solved in linear time. However, for group and commutative alphabets, we obtain the following results.

Theorem 1. SPCP is NP-complete for commutative alphabet and bounded length of the word.

Theorem 2. SPCP is NP-complete for group alphabet and bounded length of the word.

Theorem 3. SPCP is undecidable for group alphabet and 5 rules.
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Group Shunkov, saturated groups L2(pn), U3(2n)
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Arbitrary group is called a Shunkov group, if every cross section by a finite subgroup of any pair
of conjugate elements of prime order generates a finite subgroup. We emphasize that a Shunkov group,
generated by elements of finite order, is not required to be periodic. Examples of such mixed groups
already exist in the class of soluble groups [1]. Therefore, Shunkov groups pressing question about the
locations of its elements of finite order, in particular, are they a characteristic subgroup of T (G) — periodic
part? Under the periodic part of T (G) of a group G is the subgroup generated by all elements of finite
order in G , provided that it is periodic.

In [2] considered groups Shunkov, saturated groups L2(pn), Sz(22m+1). s shown that it has a periodic
part, which, is isomorphic to either L2(P ), or Sz(Q) for suitable locally of finite fields P and Q.

In the present work, the study groups Shunkov, saturated groups L2(pn) , U3(2n) .
Obtained the following result.

Theorem. The group Shunkov saturated with groups L2(pn) , U3(2n) has a periodic part T (G) , is
isomorphic to either L2(P ), or U3(Q) , where P and Q - suitable locally finite field.
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On some subgroups of finite products of generalized nilpotent groups
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All groups considered are finite. Let a group G = AB be a product of two its subgroups A and B. A
subgroup H of G = AB is called prefactorized if H = (A ∩ H)(B ∩ H), it is called factorized [1] if, in
addition, H contains the intersection A ∩B. For a saturated formation Heineken [2], for a Schunck class
X Amberg and Höfling [3] investigated prefactorized and factorized X-maximal subgroups (in particular
X-projectors) of the group G = AB with nilpotent subgroups A and B (see [4, 3.2.20, 3.2.22]).

We use notations and definitions from [5], [6]. Let π be a set of primes and π′ the complement to π
in the set of all primes. A group G is called π-decomposable if G = Gπ ×Gπ′ and a Hall π-subgroup Gπ
is nilpotent. The set of distinct primes dividing |G| is denoted by π(G). A non-empty homomorph X is a
Schunck class if any group G, all of whose primitive factor groups are in X, is itself in X. If H and X are
classes of groups then HX = (G|G has a normal subgroup N ∈ H with G/N ∈ X). Gπ′ denotes the class
of all π′-groups.

Theorem. Let X be a class of groups and X = Gπ′X. Let G be a π-soluble group and G = AB be a
product of two π-decomposable subgroups A and B.

1) If X is a Schunck class such that π(A) ∩ π(B) ⊆ Char(X), then every X-maximal subgroup of G
has a factorized conjugate.

2) If X is a saturated formation, then every X-maximal subgroup of G has a prefactorized conjugate.

Recall that a subgroup H of a group G is an X-projector if HN/N is X-maximal in G/N for every
normal subgroup N of G. If X is a Schunck class and X = Gπ′X then every π-soluble group G has an
X-projector and any two X-projectors of G are conjugate [7].

Corollary. Let X be a class of groups and X = Gπ′X. Let G be a π-soluble group and G = AB be a
product of two π-decomposable subgroups A and B.

1) If X is a Schunck class such that π(A) ∩ π(B) ⊆ Char(X), then G has a unique factorized X-
projector.

2) If X is a saturated formation, then G has a unique prefactorized X-projector.

The example 1 [3] shows that the condition π(A)∩π(B) ⊆ Char(X) of theorem can not be discarded.
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Groups, saturated with unitary groups of dimension three.
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Group G is saturated with a set of groups X, if every finite subgroupK of G is contained in a subgroup
of G, which is isomorphic to a member of X [3].

Article [1] gives a description of periodic groups saturated by groups from a set N ={U3(2n)|n –
arbitrary positive integer}. It was shown in [2] that a periodic Shunkov group, saturated by groups from
a group set M ={ U3(pm)| p – an arbitrary prime number, n – arbitrary positive integer}, is isomorphic
to U3(Q), where Q – is a suitable locally-finite field. The current work continues the investigations in that
direction. Hereinafter, a symbol e will stand for the identity element of the group. The following results
were obtained:

Theorem 1. Let a periodic group G be saturated by groups from the set M and S is the Sylow
2-subgroup of G takes one of the following forms:

1. S = 〈a2n

= v2 = 1, av = a2n−1−1〉 – a semi-dihedral group.
2. S = 〈a,w|a2n

= b2
n

= w2 = e, aw = b, ab = ba〉 – a wreath group.
3. S – is isomorphic to Sylow 2-subgroup U3(2n).
4. S – is an infinite 2-group with a period of 4, nilpotency level equal 2, S′ = Z(S) = Φ(S) = Ω1(S) .

5. S = (A×B) h 〈w〉, where A – is an infinite locally-cyclic 2-group, w2 = e, and Aw = B.
6. S = AD, where D is a finite subgroup of group S containing no wreath groups of order higher than

8, A – is an infinite locally-cyclic 2-group.

Theorem 2. Shunkov group G, saturated with groups from the set M, has a periodic part T (G), which
is isomorphic to the group U3(Q), where Q is a suitable locally-finite field.
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Special elements of the lattice of epigroup varieties
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A semigroup S is called an epigroup if, for any element x of S, some power of x lies in some subgroup
of S. On an epigroup, a natural unary operation named pseudoinversion may be defined (see [1, 2], for
instance). This allows us to consider varieties of epigroups as algebras with the operations of multiplication
and pseudoinversion.

We continue an examination of special elements of the lattice EPI of all epigroup varieties started
in [3].

An element x of a lattice 〈L;∨,∧〉 is called modular if, for all y, z ∈ L, (x ∨ y) ∧ z = (x ∧ z) ∨ y
whenever y ≤ z; lower-modular if, for all y, z ∈ L, x ∨ (y ∧ z) = y ∧ (x ∨ z) whenever x ≤ y; distributive
if x∨ (y ∧ z) = (x∨ y)∧ (x∨ z) for all y, z ∈ L; standard if (x∨ y)∧ z = (x∧ z)∨ (y ∧ z) for all y, z ∈ L;
neutral if, for all y, z ∈ L, the sublattice of L generated by x, y and z is distributive. Upper-modular,
codistributive and costandard elements are defined dually to lower-modular, distributive and standard
ones respectively.

Neutral, modular and upper-modular elements of the lattice EPI are considered in [3]. Here we
investigate lower-modular, costandard and codistributive elements of EPI.

Put ZM = var{xy = 0} and SL = var{x2 = x, xy = yx}. We denote by T the trivial epigroup
variety.

Theorem 1. An epigroup variety V is a costandard element of the lattice EPI if and only if V is one of
the varieties T , SL, ZM or SL ∨ ZM.

Recall that a variety is called 0-reduced if it may be given by identities of the form w = 0 only.

Theorem 2. An epigroup variety V is a lower-modular element of the lattice EPI if and only if V =
M∨N whereM is one of the varieties T or SL and N is a 0-reduced variety.

Theorems 1 and 2 together with results of [3] imply that an element of EPI is costandard if and only
if it is neutral, is modular whenever it is lower-modular, and is distributive if and only if it is standard.

An epigroup variety is called strongly permutative if it satisfies an identity of the type x1x2 . . . xn =
x1πx2π . . . xnπ where π is a permutation on the set {1, 2, . . . , n} with 1 6= 1π and n 6= nπ.

Theorem 3. A strongly permutative epigroup variety V is a codistributive element of the lattice EPI if
and only if V = G ∨ X where G is a variety of Abelian groups and X is one of the varieties T , SL, ZM
or SL ∨ ZM.
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Minimal generating systems and properties of Sylow 2-subgroup of alternating group
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The aim of this paper is to research the structure of Sylow 2-subgroups and to construct a minimal
generating system for such subgroups. Case of Sylow subgroup where p = 2 is very special because it
admits odd permutations, this case was not investigated in [1, 2]. There was a mistake in a statement
about irreducebility that system of k + 1 elements for Syl2(A2k) which was in abstract [3] in 2015 year.
All undeclared terms are from [4]. A minimal system of generators for a Sylow subgroup of An was
found.

Let’s denote by Tk+1 a regular binary tree labeled by vertex. If the state in the vertex is non-
trivial, then its label is 1, in other case it is 0. We denote by vj,i the vertex of Lj , which has the
number i. An automorphism of Tk+1 with non-trivial state in v1,i1 , ... ,v1,ij , v2,j2 , ... ,vk,km is denoted
by βl1,(i1,...iJ );l1(i1,...iJ );...;lk−1(i1,...iJ ) where the index li is the number of level with non-trivial state.
In parentheses after this numbers we denote a cortege of vertices of this level, where the non-trivial
states in this automorphism are present. Denote by τ the automorphism, which has a non-trivial vertex
permutation only in the first and the last vertices vk,1 and vk,2k of the last level Lk.

Lemma 1. The set of elements from subgroup of AutTk: α0,(1), α1,(1), α2,(1), αk−2,(1), τ , is system
of generators for Syl2(A2k).

Lemma 2. Orders of groups 〈α0,(1), α1,(1), α2,(1), αk−2,(1), τ〉 and Syl2(A2k) are equal to 22k−2.

Main Theorem. The set of elements from subgroup of AutTk β0,(1);k,(1,2k), β1,(1);k,(2k−1,2k−1+1),
β2,(1), ... ,βk−2,(1) is minimal generators for a Sylow 2-subgroup of A2k .

For example minimal system for Syl2(A16):

β0

·

· ·

•1 · · ·

·

· ·

· · · •1

•
1

·· ·· ·· ·· ·· ·· ·· ··

β2

·

•1 ·

· · · ·

·

· ·

· · · ·

·

·· ·· ·· ·· ·· ·· ·· ··

β1

•1

· ·

· · · •1

·

· ·

•1 · · ·

·

·· ·· ·· ·· ·· ·· ·· ··

It was proved that the structure of Sylow 2-subgroup of A2k is the following:
k−1

o
i=1

C2 n
∏2k−1−1
i=1 C2,

where we take C2 as group of action on two elements and action is faithful.
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In the theory of groups are well known results on the complementarity of an F-residual GF in a finite
group G where F is a local formation (see, for example, [1]). Using the properties of F-normalizers of
G we obtain new results on the complementarity of GF by F-normalizers of the group G where F is an
ω-local Fitting formation and ω ⊆ π(F).

We consider only finite groups. Not listed designations and definitions can be found in [1]. Let ω be
a non-empty subset of the set of all primes P, f : ω ∪{ω′} → { formations of groups } is an ωF -function.
A formation F = (G : G/Oω(G) ∈ f(ω′) and G/Fp(G) ∈ f(p) for all p ∈ ω ∩ π(G)) is called an ω-local
formation with the ω-satellite f . Following [2] (see definition 2.6.1 [2]) we state the following definitions.

Definition 1. Let F be a non-empty formation. A normal subgroup R of the group G is called an
F-limited normal subgroup of G if R ≤ GF and R/R ∩Φ(G) is a chief factor of the group G. A maximal
subgroup M of G is called F-critical in G if G = MR for some F-limited normal subgroup R of G.

Definition 2. Let F be a non-empty ω-local formation. A subgroup H of the group G is called an
F-normalizer of G if H/Φ(H) ∩ Oω′(H) ∈ F and there exists a maximal chain H = Ht ⊂ Ht−1 ⊂ · · · ⊂
H1 ⊂ H0 = G where Hi is an F-critical subgroup of Hi−1 for each i = 1, 2, . . . , t and 0 ≤ t.

Theorem 1. Let F be a non-empty ω-local formation and let G be a group. Then there exists at least
one F-normalizer H of the group G and G = GFH.

Theorem 2. Let F be a non-empty ω-local Fitting formation and let G = A1A2 · · ·An be a group
where Ai is a subnormal subgroup of G for each i = 1, 2, . . . , n and ω ⊆ π = π(F). If a F-residual of Ai
is ω-soluble and for every p ∈ ω Sylow p-subgroups of AF

i is abelian for each i = 1, 2, . . . , n then every
F-normalizer of G is an ω-complement for GF in G.

Corollary 1. Let F be a local non-empty Fitting formation and let G = A1A2 · · ·An be a group where
Ai is a subnormal subgroup of G for each i = 1, 2, . . . , n. If an F-residual AF

i is π(F)-soluble for every
i = 1, 2, . . . , n and its Sylow p-subgroups are abelian for all p ∈ π(F) then each F-normalizer of G is the
complement for F-residual GF in G.

Corollary 2. Let F be a local non-empty Fitting formation and let G = A1A2 · · ·An be a group
where Ai is a subnormal subgroup of G for each i = 1, 2, . . . , n. If F-residual AF

i is abelian for every
i = 1, 2, . . . , n then each F-normalizer of G is the complement for F-residual GF in G.

Theorem 3 Let F be a non-empty ω-local formation, let G be a group and let ω1 be a set of all primes
p ∈ ω for which GF has an abelian Sylow p-subgroup. Then GF has an ω1-complement in any extension
of G.

Theorem 4 Let F be a non-empty ω-local formations, let Γ be an extension of the group G and let
ω1 = {p ∈ P| p divides (| Γ : GF |, | GF |)}. If ω1 ⊆ ω and a Sylow p-subgroup of GF is abelian for each
p ∈ ω1, then GF has a complement in the group Γ.
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Let G = (V,E) be an undirected graph without loops and multiple edges with the vertex set V =
{1, 2, . . . , n} and the edge set E. G is regular if each vertex has the same number k of the neighbours.
The parameter k is called the degree of the graph. For any vertices v, u ∈ V the distance d(v, u) is the
number of edges in the shortest path that connects them. By Gi(v) we denote the set of the vertices that
are at distance i from v. A connected graph G is called distance-regular if it is regular of degree k and for
any two vertices v, u ∈ V at distance i = d(v, u), there are precisely ci neighbours of u in Gi−1(v) and bi
neighbours of u in Gi+1(v). The numbers bi, ci, ai = k− bi − ci are called the intersection numbers of G.

Consider the adjacency matrix A of order n, defined as following:

Aij =

{
1, when ij ∈ E
0, when ij /∈ E

For a matrix A let Λ = {λ1, . . . , λt} be the set of its eigenvalues. If f = (f1, . . . , fn) is a function
on the graph vertices that satisfies the equation Af = λf , we call it an eigenfunction of the graph
G corresponding to the eigenvalue λ. The support supp(f) of the function f is the set of its non-zero
coordinates, i.e. supp(f) = {i | fi 6= 0}. We are interested in finding the eigenfunctions with the supports
of minimum cardinality.

In the current work we study the distance-regular graphs of the degree k = 3. It is known [1] that up
to isomorphism there are only 13 of them: K4, K3,3, the Petersen graph, the cube, the Heawood graph,
the Pappus graph, the Coxeter graph, the Tutte-Coxeter graph, the dodecahedron, the Desargues graph,
the Foster graph, the Tutte 12-cage, the Biggs-Smith graph. For all of them, except for the last two
graphs, we found the cardinalities of the minimum supports of the eigenfunctions over the field R and
classified their structures for all the eigenvalues.

This research was funded by the Russian Science Foundation (grant No 14-11-00555).
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On arc-transitive distance-regular covers of complete graphs related to SU3(q)
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In 1991, P. J. Cameron has discovered a family of arc-transitive distance-regular covers of complete
graphs, which are obtained by the following construction proposed in [3, p.90]. Let E be the quadratic
extension of the finite field F of q elements. Denote by V the 3-dimensional vector space over E equipped
with a non-degenerate Hermitian form B. Let U be a subgroup of E∗ of index r. Let Ψr be the graph
on the set of U -orbits on the isotropic vectors of V with two vertices vU and wU being adjacent if
and only if B(v, w) = 1. By [3, Proposition 5.1 (iv)] Ψr is distance-regular (with intersection array
{q3, (r− 1)(q2 − 1)(q + 1)/r, 1; 1, (q2 − 1)(q + 1)/r, q3}) if and only if either q is even and r divides q + 1,
or q is odd and r divides (q + 1)/2. The question naturally arises whether this family comprises (up to
isomorphism) all distance-regular covers of complete graphs with the antipodality index dividing q + 1,
which possess an arc-transitive automorphism group, isomorphic to SU3(q). As we will show below, it
turns out, that the answer is negative.

Let G = SU3(q) denote the special unitary group on V and put K = G〈e1〉,〈e2〉, where e1 and e2 are
two non-collinear isotropic vectors of V . Take P to be the subgroup of K of order q− 1, and let S be the
subgroup of G〈e1〉 of order q

3. Put H = SP . Assume that g is a 2-element of G interchanging 〈e1〉 with
〈e2〉 such that g2 ∈ H. Let Γ(G,H,HgH) denote the graph with vertex set {Hx | x ∈ G} whose edges
are the pairs {Hx,Hy} such that xy−1 ∈ HgH.

Theorem. If q is odd, then Γ(G,H,HgH) is distance-regular if and only if g is an element of order
4, while if q is even, then g is an involution and Γ(G,H,HgH) is a distance-regular graph isomorphic
to Ψq+1. In both cases, the resulting distance-regular graph has intersection array {q3, q(q2− 1), 1; 1, q2−
1, q3}, does not depend on the choice of the element g (of the given order) and admits distance-regular
quotients with intersection array {q3, (i − 1)(q2 − 1)(q + 1)/i, 1; 1, (q2 − 1)(q + 1)/i, q3} for each proper
divisor i of q + 1.

Remark. Assume that q is odd and let g be of order 4. Distance-regularity of Γ(G,H,HgH) appear to
be first shown in the course of this work. Note that if γ is an element of E∗ such that γq = −γ and U = F ∗,
then Γ(G,H,HgH) is isomorphic to the graph Φ on the set of U -orbits on the isotropic vectors of V with
two vertices vU and wU being adjacent if and only if B(v, w) ∈ Uγ. The construction of the graph Φ
fits in the construction described in [2, Proposition 12.5.4], which generalizes the Cameron construction.
However, the case r = q + 1 for an odd q has not been completely considered in [2]. Note also, that if in
definition of Φ we assume γ ∈ U instead of the condition γq = −γ, then we get Φ ' Ψq+1 ' Γ(G,H,HgH)
for an involution g.

This work was supported by Russian Foundation for Basic Research (research project No. 14-01-
31298).
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On finite groups with submodular Sylow subgroups

Vladimir Vasilyev
F. Skorina Gomel State University, Gomel, Belarus

Throughout these abstracts, all groups are finite. Recall that a subgroup M of a group G is called
modular in G, if the following hold:

1) 〈X,M ∩ Z〉 = 〈X,M〉 ∩ Z for all X ≤ G,Z ≤ G such that X ≤ Z, and
2) 〈M,Y ∩ Z〉 = 〈M,Y 〉 ∩ Z for all Y ≤ G,Z ≤ G such that M ≤ Z.
Note that a modular subgroup is a modular element (in the sense of Kurosh [1, Chapter 2, p. 43]) of a

lattice of all subgroups of a group. Properties of modular subgroups were studied in the book [1]. Groups
with all subgroups are modular were studied by R. Schmidt [1], [2] and I. Zimmermann [3]. By parity
of reasoning with subnormal subgroup, in [3] the notion of a submodular subgroup was introduced.

Definition [3]. A subgroup H of a group G is called submodular in G, if there exists a chain of
subgroups H = H0 ≤ H1 ≤ . . . ≤ Hs−1 ≤ Hs = G such that Hi−1 is a modular subgroup in Hi for
i = 1, . . . , s.

It’s well known that in a nilpotent group every Sylow subgroup is normal (subnormal). In the paper
[3] groups with submodular subgroups were studied. In particular, it was proved that in a supersoluble
group G every Sylow subgroup is submodular if and only if G/F (G) is abelian of squarefree exponent. A
criterion of the submodularity of Sylow subgroups in an arbitrary group was found.

We continue study of groups with submodular Sylow subgroups. A group we call strongly supersoluble
and denote sU, if it is supersoluble and every Sylow subgroup is submodular in it. Denote B a class of all
abelian groups of exponent free from squares of primes; smU = ( G | every Sylow subgroup of the group
G is submodular in G ).

We obtained the following results:

Theorem 1. Let G be a group. Then the following hold:
1) if G ∈ smU and H ≤ G, then H ∈ smU;
2) if G ∈ smU and N EG, then G/N ∈ smU;
3) if Ni EG and G/Ni ∈ smU, i = 1, 2, then G/N1 ∩N2 ∈ smU;
4) if Hi ∈ smU, Hi EG, i = 1, 2 and H1 ∩H2 = 1, then H1 ×H2 ∈ smU;
5) if G/Φ(G) ∈ smU, then G ∈ smU;
6) the class of groups smU is a hereditary saturated formation.

Theorem 2. The class of all groups with submodular Sylow subgroups is a local formation and has a
local screen f such that f(p) = (G ∈ S | Syl(G) ⊆ A(p− 1) ∩B) for every prime p.

Theorem 3. Let G be a group. Then the following statements are equivalent:
1) every Sylow subgroup is submodular in G;
2) G is Ore dispersive and every its biprimary subgroup is strongly supersoluble;
3) every metanilpotent subgroup of G is strongly supersoluble.
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About some products K-P-subnormal subgroups of finite groups

Artem Vegera
F. Skorina Gomel State University, Gomel, Belarus

We consider only finite groups. In 1978 O. Kegel [1] proposed the concept of K-F-subnomal subgroup.
Let F be a non-empty hereditary formation. A subgroup H of a group G is called K-F-subnormal

(F-reachable [1]) subgroup of G (denoted H K-F-sn G), if there is a chain of subgroups H = H0 ⊆ H1 ⊆
· · · ⊆ Hn = G such that or Hi−1 / Hi, or HF

i ⊆ Hi−1, for i = 1, . . . , n.
In papers [2] and [3] A. F. Vasil’ev, T. I. Vasil’eva, V. N. Tyutyanov introduced the definitions of

P-subnormality and K-P-subnormality for subgroups respectively.

Definition 1 [3]. A subgroup H of group G is called K-P-subnormal in G (denoted H K-P-sn G), if
there is a chain of subgroups H = H0 ⊆ H1 ⊆ · · · ⊆ Hn = G such that either Hi−1 is normal in Hi or
|Hi : Hi−1| is prime for every i = 1, . . . , n.

Let U be the formation of all supersoluble groups, then every K-U-subnormal subgroup of G is K-P-
subnormal in G. The converse assertion fails to hold in general.

In [3] authors studied the properties of products of groups G = AB where A and B are K-P-subnormal
in G. In the present article we continue investigations of [3] in the case if a group G is the product of its
pairwise permutable subgroups G1, G2, . . . , Gn, ie G = G1G2 . . . Gn and GiGj = GjGi for all integers i
and j with i, j ∈ {1, 2, . . . n}.

Definition 2 [3]. A group G is called w-supersoluble if every Sylow subgroup of G is K-P-subnormal
in G.

Theorem 1. Let G = G1G2 . . . Gn be the product of its pairwise permutable Ore dispersive subgroups
G1 G2, . . . , Gn, subgroups Gi K-P-sn GiGj and Gj K-P-sn GiGj for each i, j ∈ {1, 2, . . . n}. Then G is
Ore dispersive.

Theorem 2. Let G = G1G2 . . . Gn be the product of its pairwise permutable nilpotent subgroups G1

G2, . . . , Gn, subgroups Gi K-P-sn GiGj and Gj K-P-sn GiGj for each i, j ∈ {1, 2, . . . n}. Then G is
w-supersoluble.

Recall [2] a generalized commutant of a group G is called the smallest normal subgroup N of G such
that G/N is a group with abelian Sylow subgroups.

Theorem 3. Let G = G1G2 · · ·Gn be the product of its pairwise permutable w-supersoluble subgroups
G1, G2, . . . , Gn, subgroups Gi K-P-sn GiGj and Gj K-P-sn GiGj for each i, j ∈ {1, 2, . . . n}. If the
generalized commutant of group G is nilpotent, then G is w-supersoluble.
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On finite groups generated by involutions

Boris Veretennikov
Ural Federal University, Yekaterinburg, Russia

The problem of classification of all finite 2-groups generated by three involutions appears to be difficult.
In [1] classification of metabelian groups with this condition was announced and also the list of such

groups with elementary abelian commutator subgroups was presented.
In [2] was proved that finite 2-groups generated by three involutions of exponent 4 have order ≤ 210

and they are classified.
In present communication we announce two theorems, the first of which is considered in the class of

all finite groups.

Theorem 1. For any finite group A generated by involutions there exists a finite group B generated
by three involutions with a series of subgroups:

1 ≤ N ≤ G ≤ B, where

N EB,G/N ' A.

The proof of theorem 1 with some additional considerations implies theorem 2.

Theorem 2. There exist finite 2-groups generated by three involutions of arbitrarily large derived
length.
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Upper-modular and related elements of the lattice of commutative semigroup varieties

Boris Vernikov
Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russia

We denote by SEM the lattice all semigroup varieties and by Com the sublattice of SEM consisting
of all commutative varieties. During last decade, about 15 articles devoted to examination of special
elements of different types in these two lattices were appeared. The results obtained here are overviewed
in the recent article [1]. Special elements of eight types were considered in the mentioned articles, namely
neutral, standard, costandard, distributive, codistributive, modular, lower-modular and upper-modular
elements (the definitions see in [1]). In the lattice SEM, neutral, standard, costandard, distributive
or lower-modular elements are completely described, and a significant results concerning codistributive,
modular or upper-modular elements were obtained. In the lattice Com, neutral, standard, distributive
or lower-modular elements were completely determined, and a significant results about modular elements
were proved. But there no any information about costandard, codistributive or upper-modular elements
in Com up to the recent time. The following two theorems give a complete description of these elements.

Theorem 1. For a commutative semigroup variety V, the following are equivalent:

a) V is an upper-modular element in the lattice Com;

b) V is a codistributive element in the lattice Com;

c) one of the following holds:

(i) V is the variety of all commutative semigroups;

(ii) V =M∨N whereM is either the trivial variety T or the variety of semilattices SL, and N
is a commutative variety with the identities x2yz = 0 and x2y = xy2;

(iii) V = G ∨M∨N where G is a variety of periodic Abelian groups,M is one of the varieties T ,
SL or var{x2 = x3, xy = yx}, and N is a commutative variety with the identity x2y = 0.

Theorem 2. A commutative semigroup variety V is a costandard element in the lattice Com if and
only if one of the claims (i) or (ii) of Theorem 1 holds.
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On intersections of nilpotent subgroups in finite groups with the socle isomorphic to Ω+
8 (2)

Victor Zenkov
N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia

Ural Federal University, Yekaterinburg, Russia

Let G is a finite group with the socle Soc(G) isomorphic to Ω+
8 (2). Then (see [1]) Out(Ω+

8 (2)) ∼= Σ3

and Soc(G) contains a parabolic subgroup P such that P is normalized by an involution τ which induces
the graph automorphism on Soc(G) and Levi subgroup of P is isomorphic to L3(2).

For subgroups A and B of G, denote byMG(A,B) the set of minimal under the inclusion intersections
A ∩Bg where g ∈ G and by mG(A,B) the set of minimal under the order elements from MG(A,B). Set
MinG(A,B) = 〈MG(A,B)〉 and minG(A,B) = 〈mG(A,B)〉.

The following two theorems are proved.

Theorem 1. Let G be a finite group with Soc(G) ∼= Ω+
8 (2) and S ∈ Syl2(G). If minG(S, S) 6= 1 then

G = Soc(G)〈τ〉 and minG(S, S) = O2(P )〈τ〉.

Theorem 2. Let G be a finite group with Soc(G) ∼= Ω+
8 (2), S ∈ Syl2(G), A and B be nilpotent

subgroups of G. Then the following conditions are equivalent:
(1) A ∩Bg 6= 1 for any g ∈ G;
(2) minG(A,B) 6= 1;
(3) MinG(A,B) 6= 1;
(4) G = Soc(G)〈τ〉, A and B are conjugated to some subgroups Ag and Bh of S such that Ag ∩Bh ≥

minG(S, S).

This work was supported by Russian Science Foundation, project no. 15-11-10025.
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Mikhail Volkov: 

Minicourse V, 

Lecture 1 

10:00 – 10:50 

Mikhail Volkov: 

Minicourse V, 

Lecture 2 

10:00 – 10:50 

Mikhail Volkov: 

Minicourse V, 

Lecture 3 

10:00 – 10:15 Greeting to 

Professor Vyacheslav Belonogov 

10:15 – 11:05 

Vyacheslav Belonogov 

10:50 – 11:40 

Jack Koolen 

10:50 – 11:40 

Evgeny Vdovin: 

Minicourse IV, 

Lecture 1 

11:05 – 11:55 

Lev Kazarin 

10:50 – 11:40 

Evgeny Vdovin: 

Minicourse IV, 

Lecture 2 

10:50 – 11:40 

Nadezhda 

Timofeeva: 

Minicourse III, 

Lecture 1 

10:50 – 11:40 

Nadezhda Timofeeva: 

Minicourse III, 

Lecture 2 

11:40 – 12:10 Coffee break 11:55 – 12:25 Coffee break 11:40 – 12:10 Coffee break 

12:10 – 13:00 

Vladislav Kabanov 

12:10 – 13:00 

Tomaž Pisanski: 

Minicourse II, 

Lecture 1 

12:25 – 13:15 

Bernhard Amberg 

12:10 – 13:00 

Tomaž Pisanski: 

Minicourse II, 

Lecture 2 

12:10 – 13:00 

Tomaž Pisanski: 

Minicourse II, 

Lecture 3 

12:10 – 13:00 

Tomaž Pisanski: 

Minicourse II, 

Lecture 4 

13:00 – 14:00 Lunch 13:15 – 14:15 Lunch 13:00 – 14:00 Lunch 

14:30 – 16:10 Minicourses 14:30 – 17:30 Plenary Talks 14:30 – 16:10 Minicourses 14:30 – 15:20 Plenary Talks 

14:30 – 15:20 

Dragan Marušič:  

Minicourse I, 

Lecture 1 

14:30 – 15:20 

Dragan Marušič: 

Minicourse I, 

Lecture 3 

14:30 – 15:20 

Anatoly Kondrat'ev 

14:30 – 15:20 

Dragan Marušič: 

Minicourse I, 

Lecture 5 

14:30 – 15:20  

Dragan Marušič: 

Minicourse I, 

Lecture 7 

14:30 – 15:20 

Vladimir Trofimov 

15:20 –16:10 

Klavdija Kutnar: 

Minicourse I, 

Lecture 2 

    15:20 –16:10 

  Klavdija Kutnar: 

Minicourse I, 

        Lecture 4 

15:20 – 16:10 

Natalia Maslova 

15:20 –16:10 

Klavdija Kutnar: 

Minicourse I, 

Lecture 6 

15:20 –16:10 

Klavdija Kutnar: 

Minicourse I, 

Lecture 8 

15:30 – 15:50 Closing 

17:00 

Leaving Ivolga 
16:10 – 16:40 Coffee break 

16:40 – 19:00 Contributed talks 16:40 – 17:30 Vladimir Levchuk 16:40 – 19:00 Contributed talks 

19:00 – 20:00 Dinner 17:45 – 18:00 Conference Photo 19:00 – 20:00 Dinner 

20:00 – 22:00 Problem Solving / Sports Conference Dinner 20:00 – 22:00 Problem Solving / Sports 



Groups and Graphs, Algorithms and Automata Announcement

Announcement

Sobolev Institute of Mathematics of Siberian Branch of Russian Academy of Sciences and Novosibirsk
State University organize the International Conference and PhD-Magister Summer School “Graphs
and Groups, Spectra and Symmetries” (G2S2). It will be held in Akademgorodok, Novosibirsk, Russia,
August, 15− 28, 2016.

Summer School Minicourses will be given by:

Alexander A. Ivanov, Imperial College, London, UK
Lih Hsing Hsu, Providence University, Taichung, Taiwan
Bojan Mohar, Simon Fraser University, Canada

Short descriptions of Minicourses
Minicourse 1: Y -groups via Majorana Theory

Lecturer: Alexander A. Ivanov, Department of Mathematics, Imperial College, London, UK

Syllabus: Motivated by an earlier observation by B. Fischer, around 1980 J. H. Conway conjectured
that a specific Coxeter diagram Y443 together with a single additional (so-called “spider”) relation form
a presentation for the direct product of the largest sporadic simple group known as the Monster and
a group of order 2. This conjecture was proved by S. P. Norton and the lecturer in 1990. It appears
promising to revisit this subject through currently developing axiomatic approach to the Monster and
its non-associative 196884-dimensional algebra, which goes under the name “Majorana Theory”.

Minicourse 2: Another viewpoint of Euler graphs and Hamiltonian graphs

Lecturer: Lih Hsing Hsu, Distinguished Professor, Providence University, Taichung, Taiwan

Syllabus: It may appear that there is little left to do in regards to the study of the Hamiltonian property
of vertex transitive graphs unless there is a major breakthrough on the famous Lovasz conjecture.
However, if we extend the concept of the traditional Hamiltonian property to other Hamiltonicity
properties, then there is still much left to explore. In this series of lectures, I will introduce some of
these Hamiltonicity properties, namely fault tolerant Hamiltonian, spanning connectivity, and mutually
independent Hamiltonicity.

Yekaterinburg, Russia 109 August, 9-15, 2015

Graphs and Groups, Spectra and Symmetries 
Akademgorodok, Novosibirsk, Russia, August, 15 − 28, 2016
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