Symmetry via graphs and their groups of automorphisms Lecture 3: On the full automorphism group in VT graphs – from even to odd automorphisms

Dragan Marušič

University of Primorska

Yekaterinburg, August 2015

VERTEX-TRANSITIVE GRAPHS OF ORDER 2p

Brian Alspach* and Richard J. Sutcliffe†

Department of Mathematics Simon Fraser University Burnaby, British Columbia V5A 1S6 Canada

INTRODUCTION AND BRIEF HISTORY

In the past ten years there has been a considerable amount of activity in the area of *circulant graphs* and *digraphs*. Most of this has consisted of investigation of basic properties of circulants along with some applications. We shall now summarize some of this activity.

Let $S \subseteq \{1, 2, ..., n-1\}$ with the property that $i \in S$ implies $n - i \in S$. The circulant graph G(n, S) is the graph with vertex set $v_0, v_1, ..., v_{n-1}$, and an edge joining v_i and v_j if and only if $j - i \in S$, where we take j - i modulo n; S is called the symbol of G(n, S). We may remove the restriction, $i \in S$ implies $n - i \in S$, and define the circulant digraph G(n, S) as the digraph with vertex set $v_0, v_1, ..., v_{n-1}$ and an arc from v_i to v_j if an only if $j - i \in S$ modulo n. (All subscript arithmetic throughout this paper shall be modulo n, henceforth we refrain from mentioning it.)

DESCRIPTION OF 2-CIRCULANTS

Yap [12] gives a method of constructing vertex-transitive graphs of order 2p, but this method does not produce all such graphs. The following construction also produces vertex-transitive graphs of order 2p. We know of no vertex-transitive graph with 2p vertices that cannot be so constructed.

イロト イポト イヨト イヨト

3

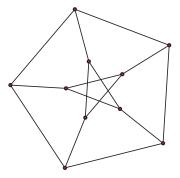
- Then the graph is a *p*-bicirculant, that is, a graph with a (2, *p*)-semiregular automorphism.
 An element of a permutation group is (*m*, *n*)-semiregular if it has *m* orbits of size *n* and no other orbit.
- A graph admitting an (m, n)-semiregular automorphism is called an (m, n)-multicirculant (a.k.a. (m, n)-galactic graph).

(日) (日) (日)

Let ρ be a (2, *n*)-semiregular automorphism of an *n*-bicirculant *X*, let *U* and *W* be the two orbits of ρ , and let $u \in U$ and $w \in W$.

Let $R = \{r \in Z_n \setminus \{0\} \mid u \sim \rho^r(u)\}$ be the symbol of the *n*-circulant induced on *U* and, let *S* be the symbol of the *n*-circulant induced on *W* (relative to ρ). Moreover, let $T = \{t \in Z_n \mid u \sim \rho^t(w)\}$. The ordered triple [R, S, T] is the symbol of *X* relative to (ρ, u, w) . Note that R = -R and S = -S are symmetric, that is, inverse-closed subsets of $Z_n \setminus \{0\}$ and are independent of the choice of vertices *u* and *w*.

▲圖▶ ▲屋▶ ▲屋▶



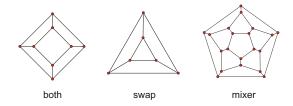
The Petersen graph $R = \{\pm 1\}, S = \{\pm 2\}, T = \{0\}.$

イロン イヨン イヨン イヨン

æ

In VT *n*-bicirculant either

- \exists a swap, an automorphism interchanging the two orbits;
- \exists a mixer, an automorphism mixing the two orbits;
- \exists a swap and a mixer.



X VTG of order 2p, $G \leq AutX$ transitive

- G is imprimitive, blocks of size p;
- G is imprimitive, blocks of size 2,
- G is primitive.

X VTG of order 2p, $G \leq AutX$ transitive

・ 御 と ・ 臣 と ・ を 臣 と

2

- X VTG of order 2p, $G \leq AutX$ transitive
 - G is imprimitive, blocks of size p a swap exists as an immediate consequence of existence of two blocks,

同 と く ヨ と く ヨ と

- X VTG of order 2p, $G \leq AutX$ transitive
 - G is imprimitive, blocks of size p a swap exists as an immediate consequence of existence of two blocks,
 - G is imprimitive, blocks of size 2 − a swap exists as a consequence of existence of a smaller H ≤ G with blocks of size p (DM'81),

X VTG of order 2p, $G \leq AutX$ transitive

- G is imprimitive, blocks of size p a swap exists as an immediate consequence of existence of two blocks,
- G is imprimitive, blocks of size 2 − a swap exists as a consequence of existence of a smaller H ≤ G with blocks of size p (DM'81),
- *G* is primitive a swap exists as a consequence of the classification of finite simple groups (CFSG).

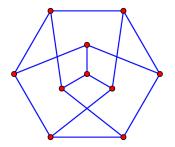
Example:

p = 5, A_5 , S_5 acting on pairs from $\{1, 2, 3, 4, 5\}$. Associated graphs: the Petersen graph and its complement.

By CFSG any primitive group of degree 2p, p > 5, is 2-transitive.

No CFSG-free proof of this fact exists. No CFSG-free answer to an even simpler question regarding (existence of odd automorphisms in) the full automorphism group.

STOA – Symmetry Through Odd Automorphisms



The full automorphism group of the Petersen graph contains involutions with three orbits of size 2 and four fixed vertices, and hence odd (as permutations) automorphisms.

A crucial question in algebraic graph theory and beyond:

Given a graph, are there any symmetries beyond the obvious ones, and, if yes, how can one determine the full set?

We approach this question by building on the duality of even/odd permutations associated with graphs.

Core STOA Research Problem:

Given a vertex-transitive graph X (admitting a transitive action of a group H) determine whether X has odd automorphisms. More precisely:

- ∢ ≣ ▶

Core STOA Research Problem:

Given a vertex-transitive graph X (admitting a transitive action of a group H) determine whether X has odd automorphisms. More precisely:

• When *H* consists of even permutations only, is there a group *G* containing odd automorphisms of *X* and *H* as a subgroup? Clearly, the examples of the Petersen graph and the 3-cube tell us that the answer is not always yes.

Core STOA Research Problem:

Given a vertex-transitive graph X (admitting a transitive action of a group H) determine whether X has odd automorphisms. More precisely:

- When *H* consists of even permutations only, is there a group *G* containing odd automorphisms of *X* and *H* as a subgroup? Clearly, the examples of the Petersen graph and the 3-cube tell us that the answer is not always yes.
- Further, what is the minimum index [G: H] among all such groups G? In the Petersen graph $H = A_5$ is the only transitive group of even permutations and its only "extension" is $G = S_5$, and so its minimal index is 2 as one would hope for. However, an odd "extension" G of $H = \langle (12345) \rangle$ acting on the complete graph K_5 is either of order 20 or S_5 , and the corresponding indices are 4 or 24.

< 口 > < 回 > < 回 > < 回 > < 回 > <

STOA – Symmetry Through Odd Automorphisms

Cubic arc-transitive graphs:

s	Type	Bipartite?	s	Type	Bipartite?	s	Type	Bipartite?
1	{1}	Sometimes	3	$\{2^1,3\}$	Never	5	$\{1,4^1,4^2,5\}$	Always
2	$\{1,2^1\}$	Sometimes	3	$\{2^2,3\}$	Never	5	$\{4^1,4^2,5\}$	Always
2	$\{2^1\}$	Sometimes	3	{3}	Sometimes	5	$\{4^1,5\}$	Never
2	$\{2^2\}$	Sometimes	4	$\{1,4^1\}$	Always	5	$\{4^2,5\}$	Never
3	$\{1,2^1,2^2,3\}$	Always	4	$\{4^1\}$	Sometimes	5	{5}	Sometimes
3	$\{2^1,2^2,3\}$	Always	4	$\{4^2\}$	Sometimes			

 $K_4 = \{1, 2^1\}, K_{3,3} = \{1, 2^1, 2^2, 3\}, Q_3 = \{1, 2^1\}, F010A = \{2^1, 3\},$ $F014A = \{1, 4^1\}, F016A = \{1, 2^1\}, F018A = \{1, 2^1, 2^2, 3\},$ $F020A = \{1, 2^1\}, F020B = \{2^1, 2^2, 3\}$

STOA – Symmetry Through Odd Automorphisms

Theorem: Let X be a cubic arc-transitive graph of order 2n. Then Table below gives a full information on existence of odd automorphisms in X.

Type	Odd automorphisms exist if and only if		
{1}	n odd		
$\{1,2^1\}$	$n \ {\rm odd}, \ {\rm or} \ n=2^{k-1}(2t+1) \ {\rm and} \ X \ {\rm is} \ {\rm a} \ (2t+1)\text{-Cayley}$ graph on a cyclic group of order $2^k,$ where $k\geq 2$		
$ \begin{array}{c} \{2^1\} \\ \{2^2\} \\ \{1, 2^1, 2^2, 3\} \\ \{2^1, 2^2, 3\} \\ \{2^1, 3\} \\ \{2^2, 3\} \\ \{3\} \\ \{1, 4^1\} \\ \{4^4\} \\ \{4^4\} \\ \{4^2\} \\ \{1, 4^1, 4^2, 5\} \\ \{4^1, 4^2, 5\} \\ \{4^1, 4^2, 5\} \\ \{4^1, 5\} \\ \{5\} \end{array} $	n odd and X bipartite never n odd n odd n odd n odd n odd and X bipartite n odd n odd and X bipartite n odd n odd and X bipartite n odd n odd n odd n odd n odd n odd n odd n odd n odd n odd		

Dragan Marušič

< 口 > < 同

Thank you!

æ