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Definitions

An automorphism of a graph X = (V, E) is an isomorphism of X with
Itself. Thus each automorphism « of X iIs a permutation of the vertex set
V' which preserves adjacency.

A graph X = (V, F) is vertex-transitive if for any pair of vertices u, v
there exists an automorphism « such that a(u) = v.

A graph is edge-transitive if its automorphism group acts transitively on
edges.

A graph is arc-transitive (also called symmetric) if its automorphism
group acts transitively on arcs.

An arc-transitive graph X is said to be s-regular if for any two s-arcs in
X, there is a unique automorphism of X mapping one to the other.
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Example

Is not VT Is VT
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Definitions

- A simple cycle that traverses every vertex exactly once is called a

Hamiltonian cycle (Hamiltonian circuit).

- Similarly, a simple path that traverses every vertex exactly once is a
Hamiltonian path.

- A hamiltonian graph is a graph that possesses a Hamiltonian cycle.
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Examples
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Hamilton’s Icosian game (1857)

W. R. Hamilton in T. P. Kirkman
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The Dodecahedron (The Icosian game)

Given vertices u and w.

Is there a Hamiltonian path between these two vertices?
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The Dodecahedron (The Icosian game)

Distance 1 Distance 3 Distance 4 Distance 5
Distance 2 ?
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The main motivation for studying vertex-transitive graphs

Does every connected vertex-transitive graph have a Hamiltonian path
(Lovasz, 1969)?

Only 4 connected VTG (n > 2) without Hamiltonian cycle are known:
Petersen graph
A graph obtained from the Petersen graph after a truncation

Coxeter graph
A graph obtained from the Coxeter graph after a truncation
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The Petersen graph.

How do we prove that the Petersen graph has no Hamiltonian cycle?

Vertex-transitive graphs without Hamiltonian cycles — p.10/28



The Petersen graph.

How do we prove that the Petersen graph has no Hamiltonian cycle?

Vertex-transitive graphs without Hamiltonian cycles — p.10/28



The Petersen graph.

How do we prove that the Petersen graph has no Hamiltonian cycle?

Vertex-transitive graphs without Hamiltonian cycles — p.10/28



The Petersen graph.

How do we prove that the Petersen graph has no Hamiltonian cycle?

Vertex-transitive graphs without Hamiltonian cycles — p.10/28



The Petersen graph.

How do we prove that the Petersen graph has no Hamiltonian cycle?

Vertex-transitive graphs without Hamiltonian cycles — p.10/28



The Petersen graph.

How do we prove that the Petersen graph has no Hamiltonian cycle?

Vertex-transitive graphs without Hamiltonian cycles — p.10/28



The Petersen graph.

How do we prove that the Petersen graph has no Hamiltonian cycle?

Vertex-transitive graphs without Hamiltonian cycles — p.10/28



The Petersen graph

Hamiltonian path
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A graph obtained from the Petersen graph after a truncation
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The Coxeter graph




The Coxeter graph In Frucht’s notation




Constructing the Coxeter graph from the Fano plane (P, L)

X = (V,E)
V={PlePxL|Pgl}
(P,1) ~ (P',I")iff P = LUI' U{P,P")
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Properties of the Coxeter graph Y 5

AutY = PGL(2,7),

AutY | = 336.

Y Is vertex-transitive, arc-transitive and 3-regular.

A vertex-stabilizer is of order 3 - 257! = 12 and it isomorphic to D;5.

An arc-stabilizer is of order 2°—! = 4 and it isomorphic to z, x zs.

A stabilizer of an edge is of order 8.

Y is distance-transitive.

Y is of diameter 4.

A distance-transitive graph is a graph such that, given any two vertices v and
w at any distance ¢, and any other two vertices = and y at the same distance,
there is an automorphism of the graph that carries v to  and w to y.
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The Coxeter graph In distance-transitive format
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1-factor of a graph

A 1-factor of a graph is a spanning subgraph which is regular of valency one.
A k-factor of a graph is a spanning subgraph which is regular of valency k.

(Petersen’s theorem, 1891) Every cubic bridgeless graph has a 1-factor.

A complement of a 1-factor in a cubic graph is a 2-factor.

If a graph possesses a connected 2-factor then it is hamiltonian.
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A 1-factor M in the Coxeter graph
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A complement of a 1-factor M in the Coxeter graph
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The number of 1-factors in the Coxeter graph

V, V, V, V, Vv,
- ® 0 @ @
Let M beal-factorinY.

Let 1;; be number of edges in M which join a vertex in v; to one in v;.
Then:

por =1, pi2 =2, p3=4
4+ 2p33 + p3g = 12, p3g + 2044 = 6
0 < pgq <3

= Y has 84 1-factors.
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The action of AutY on the set of 1-factors

Let M be a set of all 1-factorsinY.
Then AutY acts on M.

Let M be a particular 1-factor:
cl/tl, el/ed, d1/d3, e2/e5,
d6/t6, c6/c7, c2/t2, t7/e7,
t3/c3, t4/d4, t5/d5, d2/d7,
e3/eb, cd/ch.

Suppose that ¢ €AutY fixes M setwise.
Since M contains the three "extreme" edges with respect to ¢1, My must also

contain the three edges extreme with respect to ¢(¢1).
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The "extreme" edges

t,1 C, 1 d,1 e,
c,t—3/c,i+ 3 t,i—3/d,1— 3 t,i—1/e,i—1 t,i—2/c,1— 2
d,o—1/d,i+ 1 t,i+3/d,i+ 3 t,i+1/e,i4+1 t,i+2/c,t+ 2
e, 1 —2/e i+ 2 e, 1 —2/e,i+ 2 c,i—3/c,i+ 3 d,i—1/d,i+ 2

M={cl/tl,el/ed,d1/d3,e2/eb,d6/t6,c6/cT,c2/t2,t7/e7,t3/c3,t4/d4,t5/d5,
d2/d7,e3/e6,cd/ch}.

= ¢ must take ¢1 to either ¢1 or c1, that is, ¢ must fix the edge ¢1/c1.
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The stabilizer of M,

Automorphisms fixing an edge form a group of order 8. One of such
automorphism is that with is induced by the permutation

(1)(27)(36)(45)

of the numerical parts of the vertex-labels. This automorphism does not fix
M and so the stabilizer of M has order at most 4.

But the following automorphism of Y fixes M and has order 4

0 = (t1cl)(t2d3 c6ed)(dl c7el c2)(d4 d7t5 c4)
(e3 €6)(d6 t7 eb5 c3)(t3 t6 €7 e2)(t4 d2 d5 ¢5)
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Automorphism induced by the permutation (1)(27)(36)(45) isnotin Stab a4, -

(t1cl)(t2d3c6ed)(dlcTel c2)(d4dTt5c4)(e3e6)(d6t7edc3)(t3t6eTe2)(t4d2d5cd) €Stabpy,

Vertex-transitive graphs without Hamiltonian cycles — p.25/28



By Orbit-Stabilizer property M has exactly
336/4 = 84

distinct images under the action of AutY. Since | M| = 84 it follows that

= AutY is transitive on the set of 1-factors.

=Y does not have a Hamiltonian cycle.
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THANKS!
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