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m-Cayley graphs and semiregular automorphisms

A graph X is an m-Cayley graph on a group H if its automorphism
group admits a semiregular subgroup H having m orbits, all of
equal length.

If H is cyclic and

m = 1 then X is said to be circulant;

m = 2 then X is said to be bicirculant;

m = 3 then X is said to be tricirculant.

m = 4 then X is said to be tetracirculant;

m = 5 then X is said to be pentacirculant.

A non-identity automorphism of a graph with m cycles of equal
length n in its cycle decomposition is said to be (m, n)-semiregular.
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Example

a (2, 5)-semiregular automorphism ρ = (1 2 3 4 5)(1′ 2′ 3′ 4′ 5′)
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Motivation

Cubic symmetric m-Cayley graphs on cyclic groups for small m?
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Cubic symmetric circulants

Cubic symmetric circulants

The complete graph K4 and the complete bipartite graph K3,3 are
the only examples of connected cubic symmetric circulants.
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Cubic bicirculants
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Cubic symmetric bicirculants - classified

Frucht, Graver & Watkins 1971, Marušič & Pisanski 2000, Pisanski 2007

A connected cubic symmetric graph is a bicirculant if and only if it is
isomorphic to one of the following graphs:

K4, K3,3,

generalized Petersen graphs GP(4, 1), GP(5, 2), GP(8, 3),
GP(10, 2), GP(10, 3), GP(12, 5), and GP(24, 5),

the Heawood graph F014A, the Möbius-Kantor graph F016A, and
a Cayley graph Cay(D2n, {b, ba, bar+1}) on
D2n = 〈a, b | an = b2 = baba = 1〉 with respect to the generating set
{b, ba, bar+1}, where n ≥ 11 is odd and r ∈ Z∗n such that
r2 + r + 1 ≡ 0 (mod n).

Hereafter the notation FnA, FnB, etc. will refer to the corresponding

graphs in the Foster census.
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Examples of cubic symmetric tricirculants

The graphs K3,3, F018A, F030A and F054A shown in Frucht’s notation

with respect to a (3, 2)-, (3, 6)-, (3, 10)- and (3, 18)-semiregular

automorphism, respectively.
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Classification of cubic symmetric tricirculants

Thm (Kovács, KK, Marušič, Wilson, 2012)

A connected cubic symmetric graph is a tricirculant if and only if it
is isomorphic to one of the following four graphs: K3,3, F018A,
F030A, and F054A.
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Classification of CST – essential ingredients in the proof

X . . . a connected cubic symmetric tricirculant

(Non)-core-free tricirculant

X is a core-free tricirculant if it admits a (3, n)-semiregular
automorphism ρ such that the subgroup generated by ρ is core-free in the
full automorphism group Aut(X ). Otherwise, X is a non-core-free
tricirculant.

A core of a subgroup K in a group G (denoted by coreG (K )) is the
largest normal subgroup of G contained in K .
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Core-free tricirculants

Core-free lemma

A connected cubic symmetric tricirculant is core-free if and only if
it is isomorphic to one of the following three graphs: K3,3, F018A,
and F030A.
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Proof of Core-free lemma

X a connected cubic symmetric core-free tricirculant of order
o = 3n.

X is s-regular for some s ≤ 5 (Tutte, 1947).

|Aut(X )| = 3 · 2s−1 · |V (X )| = 9 · 2s−1 · n ≤ 144n.

Proposition (Herzog & Kaplan, 2001)

If H is a cyclic subgroup of a finite group G with |H| ≥
√
|G |, then H

contains a non-trivial normal subgroup of G .

n2 < |Aut(X )|, and consequently n < 144.

Conder’s list & Magma ⇒ X ∈ {K3,3,F018A,F030A}. �
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Non-core-free tricirculants

Non-core-free lemma

A connected cubic symmetric tricirculant is non-core-free if and
only if it is isomorphic to F056A (a particular regular Z3-cover of
F018A).
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Proof of Non-core-free lemma

X a connected cubic symmetric non-core-free tricirculant of order
o = 3n.

There exists a (3, n)-semiregular automorphism ρ in Aut(X ), and a
nontrivial subgroup N = coreAut(X )(〈ρ〉) of 〈ρ〉 which is normal in

AutX .

Corollary of Lorimer’s result from JGT 1984

The quotient graph XN is a connected cubic symmetric core-free
tricirculant with a (3, n/|N|)-semiregular automorphism.
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Proof of Non-core-free lemma

By Core-free lemma XN is isomorphic to K3,3, F018A or F030A,
and X is a regular Z|N|-cover of XN .

Now graph covering techniques give that X = F054A.

Du, Kwak & Xu, 2005 (Essential covering result used in the proof)

Let K be a finite group, and let X ×ζ K be a connected regular cover of
a graph X derived from a voltage assignment ζ with the voltage group
K , and let the lifts of α ∈ Aut(X ) centralize K , considered as the group
of covering transformations. Then for any closed walk W in X , there
exists k ∈ K such that ζ(W α) = kζ(W )k−1. In particular, if K is
abelian, ζ(W α) = ζ(W ) for any closed walk W of X .

�
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Cubic symmetric tetracirculants

Thm (Frelih, KK, 2011)

A connected cubic symmetric graph is a tetracirculant if and only
if it is isomorphic to one of the following graphs:

F020A, F020B, F028A, F032A;

F008A, F024A, F040A;

F016A, F048A, F056C, F060A, F080A, F096A, F112B,
F120B, F224C, F240C;

any of the connected arc-transitive cyclic covers of F008A.

All connected arc-transitive cyclic covers of F008A are known
(Feng and Wang, 2003).

Klavdija Kutnar



Definitions
Motivation

Cubic symmetric tricirculants
Cubic symmetric tetracirculants and pentacirculants

Arc-transitive cyclic covers of F008A

Let k be an integer such that 1 ≤ k ≤ n − 1 and (k , n) = 1. Let
V (F008A) = {a, b, c , d ,w , x , y , z}. Now, for any two non-negative
integers k and n with 1 ≤ k ≤ n − 1 and (k , n) = 1, the graph CQ(k, n)
is defined to have vertex set V (CQ(k , n)) = V (Q3)× Zn and edge set

E (CQ(k, n)) = {(a, i)(x , i), (a, i)(y , i)(a, i)(z , i)(b, i)(w , i),

(b, i)(z , i), (c , i)(z , i), (d , i)(y , i),

(b, i)(y , i + 1), (c , i)(w , i + k), (c , i)(x , i − k−1),

(d , i)(w , i − k−1 − 1), (d , i)(x , i + k), | i = 0, 1, . . . , n − 1}.

Feng and Wang, 2003

An arc-transitive cyclic regular cover of F008A is isomorphic to one of
CQ(k, n) for 2 ≤ k ≤ n − 3 stisfying n|(k2 + k + 1) or one of
CQ(2k − 1, 2n) for 2 ≤ k ≤ n − 1 stisfying n|(4k2 − 2k + 1) or X is
isomorphic to CQ(1, 2) = F016A or CQ(1, 3) = F024A or
CQ(1, 6) = F048A.
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Arc-transitive cyclic covers of F004A

Feng and Kwak, 2007

An arc-transitive cyclic regular cover of F004A is either isomorphic
to F008A or to F016A.
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Cubic symmetric pentacirculants

Thm (Frelih, KK, 2011)

A connected cubic symmetric graph is a pentacirculant if and only
if it is isomorphic to one of the following two graphs: F050A and
F150A.

Klavdija Kutnar



Definitions
Motivation

Cubic symmetric tricirculants
Cubic symmetric tetracirculants and pentacirculants

Thank you!
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