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Snarks

A snark is a connected, bridgeless cubic graph with chromatic
index equal to 4.

non-snark = bridgeless cubic 3-edge colorable graph



The Petersen graph is a snark



Blanuša Snarks

Not vertex-transitive.



Snarks

Any other snarks amongst vertex-transitive graphs, in particular
Cayley graphs?



Snarks

Nedela, Škoviera, Combin., 2001
If there exists a Cayley snark, then there is a Cayley snark
Cay(G , {a, x , x−1}) where x has odd order, a2 = 1, and G = 〈a, x〉
is either a non-abelian simple group, or G has a unique non-trivial
proper normal subgroup H which is either simple non-abelian or
the direct product of two isomorphic non-abelian simple groups,
and |G : H| = 2.

Potočnik, JCTB, 2004
The Petersen graph is the only vertex-transitive snark containing a
solvable transitive subgroup of automorphisms.



Snarks

The hunting for vertex-transitive/Cayley snarks is essentially a
special case of the Lovasz question regarding hamiltonian
paths/cycles.

Existence of a hamiltonian cycle implies that the graph is 3-edge
colorable, and thus a non-snark.

Hamiltonicity problem is hard, the snark problem is hard too, but
should be easier to deal with.



The Coxeter graph is not a snark (easy)
vs

the Coxeter graph is not hamiltonian (harder)
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Hamiltonian cycles in cubic Cayley graphs (hard)
vs

Cayley snarks (still hard (but easier))

Types of cubic Cayley graphs Cay(G ,S):

I Type 1: S consists of 3 involutions;

no snarks; nothing known about hamiltonian cycles except YES for
the case when two involutions commute (Cherkassov, Sjerve).

I Type 2: S = {a, x , x−1}, where a2 = 1 and x is of even order;

no snarks; nothing known about hamiltonian cycles

I Type 3: S = {a, x , x−1}, where a2 = 1 and x is of odd order.

See next slides.
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Partial results for Type 3 graphs

A (2, s, t)-generated group is a group
G = 〈a, x | a2 = x s = 1, (ax)t = 1〉.

A (2, s, t)-Cayley graph is a cubic Cayley graph on G wrt
S = {a, x , x−1}.



Partial results for Type 3 graphs

Glover, KK, Malnič, Marušič, 2007-11
A (2, s, 3)-Cayley graph has

I a Hamilton cycle when |G | is congruent to 2 modulo 4,

I a Hamilton cycle when |G | ≡ 0 (mod 4) and either s is odd or
s ≡ 0 (mod 4), and

I a cycle of length |G | − 2, and also a Hamilton path, when
|G | ≡ 0 (mod 4) and s ≡ 2 (mod 4).

Corollary

There are no snarks amongst (2, s, 3)-Cayley graphs.



Proof strategy

To a (2, s, t)-Cayley graph X we associate a Cayley map M(X )
with s-gonal and 2t-gonal faces.

Further, to X we associate a ‘quotient graph’, the so-called
2t-gonal graph X2t , whose vertices are 2t-gons in M(X ) with
adjacencies arising from neighboring 2t-faces. Note that X2t is a
t-valent arc-transitive graph.



From X to X2t



From X2t to X



Sufficient conditions (in X2t) for hamiltonicity / 3-edge colorability of X :

I If the vertex set V of X2t decomposes into (I ,V − I ) with I
independent set and V − I induces a tree then X contains a
Hamiltonian cycle.

I If the vertex set V of X2t decomposes into (I ,V − I ) with I
independent set and V − I induces a bipartite graph then X is
3-edge colorable. (If X2t is near-bipartite than X is not a snark.)

In the (2, s, 3)-case a classical result of Payan and Sakarovitch about

independent sets and there complements in cyclically 4-edge-connected

cubic graphs combined together with the result of Nedela and Škoviera

about cyclic edge connectivity of cubic vertex-transitive graphs implies

the existence of an independent set I in X6 such that X [V − I ] is a forest

with at most two components. This establishes 3-edge colorability of X .



Illustration



(2, s, 4)-Cayley snarks

Non-near-bipartite tetravalent arc-transitive graphs admitting a 1-regular
subgroup with a cyclic vertex-stabilizer Z4: K5, octahedron,
Cay(Z13, {±1,±5}).

Are there other such graphs?

Problem
Classify tetravalent arc-transitive graphs with chromatic number 4
admitting a 1-regular subgroup with a cyclic vertex-stabilizer Z4.
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Thank you!


