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Semiregular automorphisms in VTG

DM, ’81; for transitive 2-closed groups, Klin, ’96
(Polycirculant conjecture)

Does every vertex-transitive graph have a semiregular
automorphism?

An element of a permutation group is semiregular, more precisely
(m, n)-semiregular, if it has m orbits of size n and no other orbit.

It is known that each finite transitive permutation group contains a
fixed-point-free element of prime power order, but not necessarily a
fixed-point-free element of prime order and, hence, no semiregular
element.
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Examples
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Why is it useful to know whether a vertex-transitive graph admits
a semiregular automorphism?

It allows a quotienting with respect to semiregular automorphisms,
and when the latter is wisely chosen, properties of the original
graph can be analyzed via its quotient.
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With this approach many questions in algebraic graph theory have
been successfully answered:

Structural results for vertex-transitive graphs with construction
of infinite families of graphs with prescribed properties.

Classification results (e.g. vertex-transitive graphs of order pq,
arc-transitive Cayley graphs of dihedral groups, ...).

Construction of new strongly regular (di)graphs with
previously unknown parameters.

Partial results on hamiltonicity of vertex-transitive graphs.
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Connection to hamiltonicity of VTG

The Pappus configuration & the Pappus graph
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Connection to hamiltonicity of VTG
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Connection to hamiltonicity of VTG
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Semiregular elements

(A) Automorphism groups of vertex-transitive (di)graphs;

(B) 2-closed transitive permutation groups;

(C) Transitive permutation groups.

The 2-closure G (2) of a permutation group G is the largest subgroup of

the symmetric group SV having the same orbits on V × V as G . The

group G is said to be 2-closed if it coincides with G (2).
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Semiregular elements

(A) Automorphism groups of vertex-transitive (di)graphs;

(B) 2-closed transitive permutation groups;

(C) Transitive permutation groups.
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Polycirculant conjecture

(B)→ semiregular elements

A permutation group with no semiregular elements is called
elusive. The 2-closures of all known elusive groups are non-elusive,
thus supporting the polycirculant conjecture.
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Semiregular elements

(B) but not (A):

Regular action of H = (Z2)2 = {id , (12)(34), (13)(24), (14)(23)}
on V = {1, 2, 3, 4}. Each of the orbital graphs has a dihedral
automorphism group intersecting in H; so H is 2-closed but not
the automorphism group of a (di)graph.
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Semiregular elements

(C) but not (B):

AGL(1, p2), for p = 2k − 1 a Mersenne prime, acting on the set of
p(p + 1) lines of the affine plane AG (2, p).

Let p = 2k − 1 be a Mersenne prime. Affine group
G = {g | g(x) = ax + b, a ∈ GF ∗(p2), b ∈ GF (p2)}
acting on cosets of the subgroup
H = {g | g(x) = ax + b, a ∈ GF ∗(p), b ∈ GF (p)}.
Every prime order element of G fixes a point.
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Known results - graphs of a particular valency

All cubic VTG have SA (DM, Scapellato, ’93).

Every arc-transitive graph (AGT) of prime valency has SA (Xu, ’07).

All quartic VTG have SA (Dobson, Malnič, DM, Nowitz, ’07).

All VTG of valency p + 1 admitting a transitive {2, p}-group for p
odd have SA (Dobson, Malnič, DM, Nowitz, ’07).

All ATG with valency pq, p, q primes, such that Aut(X) has a
nonabelian minimal normal subgroup N with at least 3 vertex orbits,
have SA (Xu, ’08).

All ATG with valency 2p (Verret, Giudici, ’13).

All ATG with valency 8 (Verret, ’13).

Klavdija Kutnar



Known results - graphs of a particular order

All transitive permutation groups of degree pk or mp, for some
prime p and m < p, have SE of order p (DM, ’81).

All VTD of order 2p2 have SA of order p (DM, Scapellato, ’93).

There are no elusive 2-closed groups of square-free degree (Dobson,
Malnič, DM, Nowitz, ’07).
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Known results - other

All vertex-primitive graphs have SA (Giudici, ’03).

All vertex-quasiprimitive graphs have SA (Giudici, ’03).

All vertex-transitive bipartite graphs where only system of
imprimitivity is the bipartition, have SA (Giudici, Xu, ’07).

Every 2-arc-transitive graph has SA (Xu, ’07).

Every VT, edge-primitive graph has SA (Giudici, Li, ’09).

All distance-transitive graphs have SA (Kutnar, Šparl, ’09).

All generalized Cayley graphs (Hujdurović, Kutnar, DM, ’13).
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Semiregular automorphisms
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Semiregular automorphisms

The main steps towards a possible complete solution of the
problem would have to consist of a proof of the existence of
semiregular automorphisms in vertex-transitive graphs admitting a
transitive solvable group.

Even for small valency graphs this is not easy. For example,
valency 5 is still open.
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Thank you!
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