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(Very brief) History
v 1979 [L.H.Conway & S.P.Norton. Monstrous Moonshine. Bull. London Math. Soc. 11: 308 — 339] Unexpected relationships
between finite simple groups and modular functions, Monster group and modular forms, were pointed out. It was conjectured a
relation of conjugacy classes of the Monster and the action of the certain subgroups of SLy(R) ~ H = {z € C|Imz > 0}. This
implies that the action SLy(R) ~ H contains information about representations of the Monster.

Monstrous Moounshine is a collection of questions and (less) answers inspired by these observations.
v 1988 [L.Frenkel, J.Lepowsky, & A.Meurman. Vertex Operator Algebras and the Monster. Acad. Press, NY] Explanation how
the Monster is related to modular forms: it acts on appropriate vertex algebra V% by its automorphisms. The tool to handle the
problem posed by Conway and Norton.
v/ 1992 [R.E.Borcherds. Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109: 405 — 444] Proof of the main
conjecture of Conway and Norton based on a special class of infinite dimensional Lie algebras — so called generalized Kac — Moody
algebras — and the No-Ghost theorem from the string theory. Also Borcherds pointed out other remarkable connections among
sporadic simple groups and modular forms. In 1998 he was awarded a Fields medal for his contributions.

Principally, Moonshine discovers two interplays:

Algebra < Modular stuff
Mathematics < Physics

Groups and actions
Denote
GLy(R)" = {a € GLa(R)|det @ > 0}, SL2(R) = {a € GL2(R)|det o = 1}.

C = CuU{oc} is a Riemann sphere
Action GL2(R) ~ C by linear fractional transformations is defined as

a b az+b
< c d ) T etd
Upper half-plane H = {z € C|Im z > 0} is GLy(R)-invariant.
Since ( _(1) _2 ) z =z then PSLy(Z) = SLo(Z)/{+I} ~ H.
I' := PSLy(Z) modular group.

Generators and fundamental domain for T’

T = (1) 1 >:Tz:z+1 = each SLy(Z)-orbit intersects {z€ H| —1/2 < Rez <1/2}.
S = _(1) (1) :Sz=-1/2 = zand —1/z are in the same orbit.

Each orbit intersects {z € H||z| > 1}. If |z| =1 then Sz = —1/z = —=Z.

D={z€ H|-1/2< Rez <1/2,|z| > 1} a fundamental domain for I' = PSLy(Z). It intersects each orbit at just one point.
Formally,

a connected subset D C H is a fundamental domain of a discrete subgroup G of SLa(R) if

(1) H=U,erD; (2) it U = int D then D = closU; (3) Vy € GyUNU = 0.

It can be proven that I' =< T,5 >.



Quotient
The map D — H/SL2(Z) is surjective and its restriction on int D is injective.
H/SL2(Z) is a Riemann surface of genus 0 with one point removed. There is an isomorphism H/SLs(Z) = C. Tt extends to

H/SLy(7) U {ico} =2 CUoco = CP' : oo — 0. (1)

Such an isomorphism is not unique. If j is one of isomorphisms (1) then another is a(j + b) for a # 0,b € C.
Since for any z € H points z and z 4+ 1 are in the same orbit than

j(z) = j(z+1) = j has a Fourier expansion j(z) = Y., oy ¢ne®™" or j(2) = >, cpcnq™ for ¢ =e
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Modular Functions, Modular Forms
Meromorphic function f: H — C is modular of weight 2k, k € Z, if for any ( Z 2 ) € SLy(Z)

F(E5) = o)

If f is also holomorphic everywhere (and at oo) then f is modular form.
Example 1. The Eisenstein series

Ey(2) =1+240 ) o3(n)q" = 1+ 240q + 2160¢° + . ..,

n>1

where o3(n) = >y, d, is a modular form of weight 4.
Example 2. The Dedekind function

n(z) =¢q H(l — ¢ =g —24¢% +252¢° — ...

n>1

is modular form of weight 12.
Example 3. The main modular function, or j-function, or Hauptmodul

T — ¢t 4 744 4 196 884 + 21493 760¢° + . . .

is a modular function of weight 0.
It is constant on orbits of SLs ~ H, holomorphic on H and has simple pole at co (¢ = 0) = it gives holomorphic isomorphism
H/SLy(Z) =~ C, where H= H U QU {ioo}.

The S Lo (Z)-orbits of points sitting in QU {ico} are called cusps and their role is to compactify the punctured Riemann sphere
H/SLy(Z). There are much fewer meromorphic functions living on compact manifolds rather then of functions living on their
non-compact subsets.

Since any other isomorphism has a form a(j(z) + b) with constants a # 0,b, then define normalized Hauptmodul, or
canonical isomorphism as J(z2) = j(z) — 744 = ¢~ + 196 884q + 21493 760q> + . . ..

Kleinian groups
Set I' := SL3(Z), define principal congruence subgroups

F(N)::{(OC‘ Z)er:(‘c‘

To(n) ;{( . ) €T : c=0modn}

and the class

Fricke [Fricke R. Die Elliptische Functionen und Threr Anwendungen. Teubner, Leipzig, 1922] investigated surfaces associated with
To(N). For N prime, I'y(N) lead to genus 0 surfaces iff p — 1|24.
The Fricke involution z — —1/Nz leads to the group

o= (g (4 )

The normalizer N(I'g(N)) of I'o(N) in PSLy(R) was described by Atkin and Lehner [Atkin A.L. & Lehner J. Hecke operators on
I'o(N). Math. Ann, 185: 134 — 160, 1970]. When N = p prime, N(I'g(N)) = To(n)*.
For a prime p, ['o(N)* has a genus 0 property iff

p=2,3,5711,13,17,19,23,29, 31,41, 47, 59, 71.



(The proof of Fricke was completed by Ogg [Ogg A.P. Automorphismes des courbes modulaires. Sem. Delange — Pisot — Poitou,
16e année, 7,1975])

This set of primes is exactly the set of prime divisors of the order of Monster Group. Its existence was only conjectured (by Fischer
and Griess) but still not proven at that time.

Finite simple groups
A group G is simple if it has no nontrivial proper normal subgroups.
Every finite simple group is isomorphic to one of the following;:
e a cyclic group Z, of prime order p;
e an alternating group A,, n > 5;
e a simple group of Lie type over a finite field, i.e. PSL,, (Fpm);
e some one of the 26 sporadic simple groups.
The largest of sporadic simple groups is the Monster group M. It contains among its subquotients twenty of the sporadic simple
groups (so called Happy Family) except for pariah J3, Ru, O'N, Ly, J,. The existence and basic properties of the Monster group
as the largest of sporadic groups, were predicted independently by Fischer and Griess in 1973.

Its order equals

216.320.59.76.11%.13%.17-19-23-29 - 31 - 41 - 47- 59 - 71.

Monster has 194 conjugacy classes and irreducible characters.
The degrees of smallest irreducible characters of M are

do=1, dy =196883, ds=21296876, d3= 842609 326,....
The character table of M was determined by Fischer, Livingstone and Thorne in 1978.

John McKay observation:

J(q) = 1 gt + 196 884 -q + 21493760 % +...

do dy + dy do + dy +dg

Also the number 196 884 appears as the dimension of the Griess algebra (to be explained later) for M. In [Thompson J. Some
numerology between the Fischer — Griess monster and modular functions. Bull. London Math. Soc. 11: 352 — 353, 1979] there are
some other relations between the coefficients ¢; of the Fourier expansion for normalized Hauptmodul

J(z) = ¢ + 196 884q + 21493 760¢* + 864 299 970¢>
+20245 856 256¢* + 333 202 640 600¢° + 4 252 023 300 096¢° + . ...

and the degrees d; of characters of the Monster M

do =1, dy =196883, dy =21296876, d; = 842609 326,
dy = 18538750076, ds = 19360062527, dg = 293553 734298,

Further numerology

Then
c1 = do+di,
c2 = do+dy+do,
s = 2do+2dy +do + ds, 2)
cs = 2do+ 3dy + 2ds + dz + ds,
cs = 4dy+5dy + 3da + 2d3 + dy + ds + d,

Based on these relations, McKay & Thompson conjectured the existence of a ('natural’) infinite dimensional representation of M

V= v,

n>—1

s.t. dimV,, = ¢,,. Then the Hauptmodul J(z) is the graded dimension of V.



Numerology for Leech lattice
Also McKay gave a relation between the j-function and the classical Lie algebra Eg and between J and the Leech lattice.
The Leech lattice is special lattice in 24 dimensions.

ci = 196560+ 324 -1
cp = 16773120+ 24 -196 560 + 3200 - 1,
c3 = 398034000+ 24 -16 773120 + 324 - 196 560 + 25560 - 1,

where

196 560 is the number of vectors in Leech lattice whose (squared) norm equals 4,

16 773120 is the number of norm 6 vectors and

398034 000 the number of norm 8 vectors.

The same equalities hold for any 24-dimensional even self-dual lattices, apart from an extra term on the right hand sides. This term
corresponds to norm 2 vectors; there are none of these in Leech lattice.

McKay — Thompson series
Thompson [Thompson, J. Finite groups and modular functions. Bull. London Math. Soc. 11: 347 — 351, 1979]: for Vg € M consider
the series
T,(2) = 3 trace(glVa)a",
neZ
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where ¢ = e and V,, is the nth graded component of V. This graded trace is called the McKay — Thompson series for g, and
generalizes the Hauptmodul: if ¢ = 1 (identity element in M) then Ty(z) = J(z). Remarkable numerology concerning these graded
traces is comprised in [Conway J.H. & Norton S.P. Monstrous Moonshine. Bull. London Math. Soc. 11: 308 — 339, 1979]

Thompson, Conway and Norton conjecture
All the series they were discovering (proceeding experimentally by first few coefficients) were normalized generators if genus 0
function fields arising from certain discrete subgroups of PSLs(R). They came to the conjecture:
there is a graded representation V' of M with all the functions T,(z) have genus zero property.
Such graded module was discovered by Frenkel, Lepowsky and Meurman [Frenkel I., Lepowsky J. and Meurman A. A natural
representation of the Fischer — Griess monster with the modular function J as a character. Proc. Natl. Acad. Sci. USA, 81: 3256 —
3260, 1984, Vertex Operator Algebra and the Monster. Acad. Press, NY, 1988], and was called the monster vertex algebra, or
the moonshine module V.

More congruence groups

A subgroup G C PSL3(R) is commensurable with PSLs(Z) if both indices [PSLy(Z) : (PSLy(Z)NG)] and [G : (PSL2(Z)NG))
are finite. Consider the action G ~ H. Since G is commensurable with PSLy(Z) then H/G is a compact Riemann surface minus
finite set of points. Then H/G C H/G where H/G is compact Riemann surface of genus g.

When g = 0 the field of automorphic functions H/G — CP' is generated by just one element, and we can take this element Jg as
the fixed isomorphism of Riemann surfaces, with leading coefficient 1 and constant term 0.

Ja(2) is the canonical isomorphism or normalized Hauptmodul of G. Jg plays the same role for G as J plays for PSLy(Z).
Examples.

Jroy = ¢ ' +276g —2018¢> + 11202¢° — 49152¢* + 18402¢° + . ..,
Jroas)y = ¢ '—q+2¢+¢+2¢" —2¢° —2¢" -2 +¢* + ...,
Jroes) = ¢ ' —aq+q*+d* -t =g+ + -+

Moonshine Conjecture of Conway and Norton: L
For each g € M the McKay — Thompson series T, (z) is the normalized Hauptmodul Jg : H/G — CP! for some subgroup G C SLy(R)
commensurable with PSLy(Z).
A Moonshine for a finite group G is a pair (G, ¢) where
«6:G—3F
1) Jo(z) modular w.r.t. discrete sbgr G < SLy(R)
AN eN:TH(N)C G
=% Jg:H—C|2)genus(H/G)=0, C(H/G) =C(Jg)
3) in a neighborhood of oo
Jo(z) = % +30 eng", q=€** z2€ H,c, €C

e if Vg € G ¢4(z) = % + 307 L enlo)g™, g = ¥
then the map G — C: g — ¢,(g) is a McKay— Thompson series of G.




Outline of Borcherds’ proof
"Monstrous moonshine and monstrous Lie superalgebras"Invent. Math. 102 (1992) 405 — 444

1. Construct a vertex operator algebra V, a graded algebra affording the moonshine representations of M.
2. Construct a Lie algebra 91 from V; this 9 is a generalized Kac — Moody Lie algebra.

3. Construct a denominator identity for 91 related to the coeflicients of J(q).

4. Construct twisted denominator identities related to the series T,(q).

5. Complete the proof.

Vertex Algebra
Let F be a field.
A vertex algebra is a k-vector space V with a collection of bilinear maps +, : VXV — V : (u,v) — u -, v for all m € Z.
Maps -, satisfy following axioms:
1. For n > 0 u -, v =0. (Ing > 0 (depending on w, v s.t. ¥n > ng u -, v = 0).
2. 31 € V (physics notation |0) — vacuum vector) s.t. 1-_jv=v,1-,v=0Vn# -1;v-.11=v,v-,1=0Vn>0.
3. (Borcherds’ identity=Jacobi identity for vertex algebras) Vu,v,w € V ¥m,n € Z

2 ( T ) (U nti V) “mk—i W=

i>0
Z(fl)l < n ) [u ‘m4n—i (1} ki w) - (71)7%} ‘k4n—i (u ‘m4i w)}

We restrict ourselves by F = R.
Vertex Operator
Denote End V[[z, 27 )] = {}X_,,cz #n2" en € EndpVVn € Z}.
A vertex operator Y(u,z) : V — V is defined by Y (u,2) = ¥, .5 unz~ """ for u, € EndV given by n-th v.a. multiplication
V= Uy U

The v.a. axioms take a view

1. Y (u, z)v has coeflicient 0 at 2" for all n sufficiently small.

2.31€eVst.eY(l,z) =1y € End(V); ¢ Y(v,2)1 € V[[z]] Vv € V; @ lim, oY (v,2)1 = v.

3. 6(z1 — 29 (u, 21)Y(v,20) — 6(22 — 21 )Y (0, 20)Y(u, 21) =6(21 — 20)Y(Y(u, 20)v, 22) for u,v € V.

Translation and Derivation
For a series a(z) = Y., an2" € V[[z,271]] denote da(z) = >, na,z""'.
Let T : V — V be the linear map s.t. T(v) =v-_5 1.

Theorem. There are following equivalent axioms for a v.a.:
1’. (translation covariance) [T, Y (u, z)] = 9Y (u, z) Yu € V;
2. (vacuum) Y(1,2) = 1y, Y(u,2)1],—0 = u Yu € V;
3. (locality) (z — w)"Y (u, 2)Y (v,w) = (2 — w)"Y (v,w)Y (u, z) for n > 0 (depending on w, v).
The application T repeatedly to the equation Tv = v -_5 1 and the identity Tv,, = [t,v,] + v, T lead to T(v,1) = (—n)vp—11;
v_pl = ﬁT"’lv Vn > 1.
Hence Y (u,z)1 = e* u Vn € V.
Remark The bracket operation [u,v] = ugv makes V/TV into a Lie algebra. Also if a(z) = Y, anz™""* € EndV{[z,271]]
define

a(z)y = Z anz " t=a_14+a sztaszt ...,
n<0
a(z)- = Z anz "t =apz  t a1z 4 a3+
n>0
Given a(z),b(z), define a normal ordered product as
ca(2)b(z) = a(2)4b(2) + b(2)a(z)—.
Borcherds’ identity is equivalent to the following three identities
a) [um, Y (v,2)] = Eizo ( YZL Y (uv, 2)2™ 7%, Yu,v € V, Vm € Z;
b) : Y(u,2)Y(v,2) ==Y (u_1v, 2) Yu,v € V;
¢) Y(Tu,z) =0Y (u,z) ueV.



Conformal vector
An element w of a v.a. V is a conformal vector of central charge c if it is an even vector satisfying
ewv=TvVv eV, oww=2w, e ww=0,eww=731, e ww=0Vi>4,
oV =0,y Vn where V,, = {v € V|wiv = nv}.
In other words, w is conformal vector if the corresponding vertex operator Y (w, z) is a Virasoro field with central charge c,
i.e. a formal series L(z) satisfying
c/2 2L(w) OL(w)
+ .
(z—w)t (z—w)? z—w

In particular, 1 € V and w € V5.

When a v.a. V has a conformal vector, it admits an action of the Lie algebra called a Virasoro algebra.

A v.a. endowed with a conformal vector w of central charge c is called a vertex operator algebra (or a conformal vertex
algebra) of rank c.

Derivation Lie algebra
For p(t) € F[t,t~1] consider the derivation
Ty =p()0 : F[t,t7'] = F[t, t'].

The derivations of this form constitute a Lie algebra 0 with natural bracket operation

[Ty, Tan)] = Towygr () - (1)a(t)

for p(t),q(t) € F[t,t71].

Choose a basis d,, = —t"*10, n € Z, in 0.

Proposition. All the derivations of F[t,t71] form the Lie algebra .

Any three generators d,,, dg,d_n, n € N span a subalgebra isomorphic to the Lie algebra sls(F) of traceless 2 x 2-matrices. Single
out the subalgebra p = Fd; + Fdy + Fd_;.

Virasoro algebra
Denote by v the 1-dimensional central extension of 0 with basis consisting of a central element ¢ and elements L,, n € Z,
corresponding to the basis elements d,, of 9. For m,n € Z set

1
[Lnu Ln] = (m - n)Lm—HL + E(mS - m)5m+n,oc
1 1
= (m—n)Lpmin + 3 ( m;— ) Omtn,0C

and [Ly,,c] = 0, Ym € Z. This central extension is trivial when restricted to the subalgebra p C 0.
Proposition. The extension v of the Lie algebra 9 is the unique nontrivial 1-dimensional extension up to isomorphism.
The Lie algebra v is called a Virasoro algebra.

Action on a Vertex Operator Algebra
Let V be a vertex operator algebra with conformal vector w. Define the map L, : V — V by L, = w,41 for n € Z. By properties

of w .
m—+1
5 ( 3 ) 5m+n,001\/~

[Lyn, Ln] = (m —n)Lppyn +
Thus, V is acted upon by the Virasoro algebra in which the central element ¢ acts on V' as cly, and c¢ is the central charge of w.

Return to Lie Algebras
Let g be a finite dimensional Lie algebra over C. It has a decomposition

g=n"@®hdn
where
W= g 0= ) ga
acdt acd—

and all g, satisfy dimg, = 1 and [h, go] = go. Here fj C g is the Cartan subalgebra, g, are root spaces w.r.t. b.
Each of these root spaces gives rise to 1-dimensional representation a of h defined by

[z, 24] = a(z) - T4

for all z, € go and x € 1.



Root lattice. Cartan matrix

We use the standard notation ® = &+ U ®~ for the set of roots of g.

Let A ={ay,...,a,.} C ® be the subset of simple roots, r = dim §.

Roots in ®T are linear combinations of elements of A with non-negative integer coefficients; roots in ®~ are linear combinations of
elements of A with non-positive integer coefficients.

The free abelian group Q = Zay + - - - + Za, is called the root lattice.

The real vector space Q ®z R inherits a natural structure of Euclidean space.

Let w; be the reflection in the wall orthogonal to «;. The isometry group of @ ®z R is generated by wi,...,w, in the Weyl
group W of g. This is a finite group permuting the elements of ®. Each root is the image of some simple root under an element of
w. wi(aj) =005 — AijOéi for Aij € 7Z.

The matrix A = (A4;;) is the Cartan matrix of g w.r.t. Cartan subalgebra b.

Generalized Cartan matrix and Kac — Moody algebra
Properties of any Cartan matrix:
L] A” =2Vi= ]., coe,Ty @ Aij S {0, —]., —2, —3} if ¢ 7é ], L] Aij =0 iff Aji = 07 L] Aij = {—2, —3} implies Aji =—1.
The Lie algebra g can be defined by generators and relations depending only on the Cartan matrix A.
The Cartan subalgebra b has a basis hq,..., h, s.t.a;(h;) = Ajj.
The generalized Cartan matrix (GCM) is any matrix satisfying the conditions
A Lie algebra is defined by generators and relations depending on the GCM A, as in the case of finite-dimensional simple Lie
algebras. This Lie algebra is extended by outer derivations to ensure the simple roots to be linearly independent even though A
occur to be singular.
The resulting Lie algebra is called the Kac — Moody algebra given by GCM A.

Main differences from finite dimensional case are that:
1. The Lie algebra g can be infinite dimensional.
2. The root spaces g, can have dimension greater then 1.
3. The Weyl group W can be infinite.
4. There can be both real and imaginary roots.
The root « is real if (o, a) > 0, the root « is imaginary if (o, a) < 0. All simple roots of a Kac — Moody algebra are real, any
real root can be obtained from a simple root by the action of appropriate element of the Weyl group.
The GCM A is symmetrizable if A = DB where B is symmetric and D is nonsingular diagonal matrix. We restrict to Kac —
Moody algebras with symmetrizable GCM.
We use the abbreviation SKMA for Symmetrized Kac — Moody Algebra.

Binary Code
Let Q be a finite set, |2] = n. The power set 2 = {S : S C Q} can be viewed as Fy-vector space under the operation + of
symmetric difference.
Binary linear code is a Fy-subspace of 2.
The cardinality |C| of an element C € C is the weight of C.
A codeCisof type Iif ne€2Z, Q€ C and VC € C |C| € 2Z.
A code C is of type IT if n € 4Z, Q € C and VC € C|C| € 4Z.
The dual code C° for C is

Co={5CQ|SnC|e2ZVC e}

Thus C° is the annihilator of C in 2 w.r.t. the natural nonsingular symmetric bilinear form (S, S2) — |S1 N Sa| 4+ 27Z on 2. Hence
dimF2C° =n — dim[FZC.
C is self-dual if C° = C. In this case n is even and dimp,C = 3.

Consider the even subspace £(Q) = {S C Q:|S| € 2Z}. The map
: 151
q:E(Q) > Zy, S— 5 +2Z

is a quadratic form associated with the bilinear form (S7,S2) — |S1 N S2| + 2Z. In case when n even Fo(Q is the radical of ¢. A
subspace of a space with a quadratic form is called totally singular if the quadratic form vanishes on it.
The weight distribution of the code C is
w(C) =Y ¢ ezlq.

cec
A Hamming code is a self-dual code of type IT on an 8-element set (2.
It can be proven that its weight distribution is 1 + 14¢® + ¢5.
Proposition. The Hamming code is unique up to isomorphism.



Golay code
A (binary) Golay code is a self-dual code C of type II s.t. C has no elements of weight 4, on a 24-element set.
The Golay code is unique up to isomorphism. Its weight distribution is

1+ 759¢% + 2576¢'% + 759¢' + ¢**.

The 759 elements of the Golay code of weight 8 are called octads.
Theorem. The Golay code is generated by octads.
The authomorphism group AutC of the Golay code is the Mathieu group May. This is nonabelian simple group.

Lattices
The lattice of rank n is a rank n free abelian group L provided with a rational-valued symmetric Z-bilinear form (-,-) : Lx L — Q.
It is easy to prove that (-,) : L x L — 1Z C Q for some r € N.
A lattice isomorphism is called isometry.
L is non-degenerate if («, L) = 0 implies a = 0.
Given a lattice L; it can be canonically embedded in the n-dimensional Q-vector space Lg = L ®z Q, and Z-bilinear form extends
to Q-bilinear form (-,-) : Lg X Lg — Q.
L is non-degenerate if Q-form is non-degenerate, i.e. if det({ay, a;))i; # 0 for Z-basis a1, ..., apn.
L is even if (o, a) € 2Z Va € Z.
L is integral if (a, 3) € Z Va, 5 € L.
Even lattice is integral.
L is positive definite if (a,a) > 0 Vo € L — {0}.

Dualization
The dual of L is L° = {« € Lg|{(, L) C Z}.
L° is a lattice iff L is non-degenerate.
In this case is the dual basis o', ...,
L is integral iff L C L°.
The lattice L is self-dual if L = L°.
It is unimodular if |det({c;, o;))i;| = 1.
L is self-dual iff it is integral and unimodular.
A self-dual code C if type IT on a set ) gives rise to a even unimodular lattice.
Let h = @), Fax be a vector space with a basis {ay|k € Q}. Define a symmetric bilinear form

() :bxb—=TF: (ok,ap) — O

a™ of a given basis a1, ..., ay,, is defined by (o, a;) = ;5 Vi,j =1,...,n.

for k, 0 € Q.

For S C Q set as =) ;g ax and define Q = P, . Zay. For a code C on  define the positive definite lattice
1 1
Lo ={)_ myax|my € 52 {klmi € Z+ S} €}
keQ
Then Ly is even iff |C| € 4Z VC € C. The dual lattice L§ of Lo is based on the dual code C°:
1 1
L = my € =Z,{klm € Z+ =} € C°}.
0 {%\ k € 5L, {klmy, 51 €C7}

Proposition. A code C is self-dual of type 11 iff the corresponding lattice L is even self-dual, or equivalently, even unimodular.
Define

1 1
Ly = ZZ§QC+ZZ(ZOZQ—QI€)
ceC keQ
= ZZ ac + Z Ozk—ag +Z(4 Oz}g()),
ceC ke

where kg € Q is a fixed element. Since the lattice
LoﬂL/—ZZ Ozc+z O{k*OLg
ceC kLeQ

has index 2 in both Lo and L{ then L{ is unimodular iff Lg is.
Necessary and sufficient condition for L{; to be even is that n = |Q| € 8(2Z + 1).
Proposition. If n € 8(2Z + 1) and the code C is self-dual of type II then the corresponding lattice L{ is even unimodular.



The Leech lattice is the even inimodular lattice A = L{, for the case n = 24 and C the Golay code.
For a lattice L and for m € Q define
Ly, ={a € L|{a,a) =m}.

The Leech lattice has Ay = 0.

Proposition. The Leech lattice is the unique even unimodular lattice of rank 24 having no elements of norm 2.

Remark. Altogether, there are 24 even unimodular lattices of rank 24, up to isometry, called the Niemeier lattices.
The group of isometries of the Leech lattice is called the Conway group Cog:

Cog = Aut(A, (,-)) = {g € Aut A : (gav, gB) = (o, B)Var, 3 € A}
Its quotient by the central subgroup {£1} is called the Conway group Co;.

Shortest elements in A
For S C Q) let €g be the involution of § s.t.

) —qap ifkesS
es.ak'—>{ o ifk¢S for k € Q.

Ay = AL U A% UAS where

1
Ap = {esac:C€C|C]=8,5CC,|S| € 2L}
A = {FartagkleQ kL)

1
Ai = {ec(zag—ak):CECJfEQ}.

For cardinalities one has
[Agl = |AL] + |AZ] + AR =759 - 27 + ( 224 ) 222 4 24 22 = 196 560.

Using the Leech lattice we form the untwisted space Vi = S(h~) ®c C[A] where

b =Phetr

n<0

for h = A ®z t™, S(-) denotes formation of a symmetric algebra.
Let L be a central extension of the lattice L by a finite cyclic group < k >= {k|k® = 1} of order s, and denote ¢ : L X L — Z the
associated commutator map s.t. aba= b~ = k%@ for a,b € L. We make choices: fix the central extension

1l s<k>=AoA—1

where s = 2 and where the commutator map is the alternating Z-bilinear map co(a, 8) = {(«, 8)ymod2Z for a,3 € A. Then

C[A] = C[A]/(x + 1)C[A] and c(av, B) = (—1)¢*# where ¢: A x A — C* : (a, B) — £ Here ¢ is 2nd primitive root of unity

¢ = —1. Then k acts on Vj as multiplication by -1 and ab = (—1)<E’5> ba for a,b € A. The automorphisms of A which induce the

involution -1 on A are involutions and are parametrized by quadratic forms on A/2A with associated form induced by ¢o. We fix the

involution 6 determined by the quadratic form ¢; : A/2A — Zs : a 4+ 2A — 3(a, @) 4 2Z. Then there is an involution 6y : A—A:

a — a~'x{®%/2 Tt has properties 0y(a?) = a2 and for @ € Ay Op(a) = a~'.
It is possible to make V, into a vertex algebra.

Foralla € A

n<0 n>0

where elements a(n), eq, 2% € EndV) are defined as follows.

a(n) is defined as follows. a(0) € EndC[A] is given by a(0)e” = v(a)e”, and a(n) € EndS(h™) satisfy
If n < 0 then «(n) is multiplication by a ® ¢".
If n > 0 then a(n) is the derivation of S(h~) determined by a(n)(z ®t~™) = n(z,«) for x € h, a(n)(z @t~™) = 0if m # n.
2% € EndV) is given by 1® 2® for 2% € EndC[A], and 2%¢? = 2{*7¢e7. Also e, € EndV} is given by 1 ® e, for e, € EndC[A], end
eae” = €(a,7)e*t7, where € : A x A — {£1} is 2-cocycle.

More generally, for

v=(h1 @tT™M) - (e @t7T™)Re“ € V)

Y (0, 2) = ﬁ <;Z)m_1 hi(z): - ﬁ <ddz)nk_1 he(2)Y (1@ e, 2) :

one has



where the normal ordered product of more then two factors is defined inductively as follows
ta1(z)az(z) .. cap(z) = a1(2)(: az(z) .. .ak(z) :) : .
For hehand m >0
1 d m—1
Y(ht™)®1l,2)= —— | — h
ooty = to(5)  ae

where h(z) = >, h(n)z=""" and h(n) € EndV) is defined as follows. h(0) € EndC[A] is given by h(0)e” = ~(h)e?, and
h(n) € EndS(h™) satisfy
If n < 0 then h(n) is multiplication by h ® t™.
If n. > 0 then h(n) is the derivation of S(h~) determined by h(n)(z ® t=™) = n(xz, h) for x € b, h(n)(z @ t~™) = 0 if m # n.
Also V) has a conformal vector w given by

w= (;Xr:(h’ @t )(h; ®t1)> ®1eVy

i=1

where hq,...,h, is a basis for b, and b}, ..., . is the dual basis w.r.t. (-,-). The element w is independent of the choice of basis.
The maps L; : Vy — V) defined by L; = w;41 satisfy

L 1 4+ 1 .
[Li, Lj] = (i — §)Livs + 3 ( ! 3 ) dim hd;450lv, -

Thus Vj is a module for the Virasoro algebra where the central element ¢ acts as multiplication by dim f = rank A = 24. Also form
a twisted space

VEi=80b") @z, T

where T is any A-module s.t. k-v =&v Yv € T.
Preserving the choices done before we set

K ={6(a)a™" :a € A} = {a®c@D/? : a € A}

which is a central subgroup of A s.t. K = 2A. Then A/K is a finite group which is a central extension 1 — (k) — A/K — A/2A — 1
with the commutator map aba~ b~ = k(@) for a,b e L ¢o: L x L — Zs induced by co(a, 8) = {(a, 8) + 2Z as before, and with
squaring map the quadratic form g;. Since A is unimodular, ¢ is nonsmgular and A/K is an extraspecial 2-group with |A/K\ =225,
In fact, in the twisted space V{ we take T to be the canonical A-module Vi = S(h~) ®z C[A]. Of course for a € A y(a) = a as
operators on T.

Define a Moonshine Module acted upon by the Monster group.
Actions of 6p:
on Vy as by : 2 ®i(a) — Op(x) ®i(fy(a)) for z € S(h~) and a € A;
on V{asz @7 bp(z) @ (—7) = —bp(a) @ 7 for z € S(h~) and 7 € T.

Let V2 and (V)% be the subspaces of Vi and (V') of fp-invariant elements.
We know that for v € Vf" the component operators of both untwisted and twisted vertex operators Y (v, z) preserve the respective
fixed spaces V2 and (V{)%.

The Moonshine Module is the space V% = Vfo ® (V)

Vertex operator on a Moonshine Module
For v € V) form the vertex operator
Y(v,2) =Yz(v,2) ®Yz41(v,2)

acting on the larger space
Wx=VyaVy

so that for v € V and for z,(n) € Wi
v, VEC VI z,(n)VE C VE,

ifve ij".
V¥ can be given a structure of a vertex operator algebra.
There is a conformal vector w of central charge 24. Thus the linear maps L; : V% — V¥ satisfy

. . 1+ 1
[Li, Lj] = (i — j)Liy; + 12 ( 3 > ditj0lye

and thus give a representation of the Virasoro algebra in which the image of the central element ¢ equals 24 - 1y4.
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Structure of V"
o Integral grading V8 = D.cz V! with Vi =0 for n < —1.
In particular, V1h = f & p, where
f=Se Y Ful, p=heTl

aebh

Define a Griess module as a space B = V1h =fdp.
Dimensions of first three direct summands are

dimV®, =1, dimVZ =0, dimV}=dimB = 196884.

In fact we have
Z(dim Vi)g" = J(2) = ¢~ + 0 + 196 884¢ + 21493 760¢> + . . .,
nez

where ¢ = €™, z € H.

B can be given the structure of a commutative associative algebra with identity and with a nonsingular symmetric associative
form in the following way: the product x and the form (-, ) on B extend those on f: u X v = v xu = uy -0, (u,v) = (v,u) = uz-v = 0.
The identity element %w in f is also identity on B. Define on p =@ T: (h1 @ 71, he @ T2) = %(hl, ho)(Ty,T) for h; € h, 7; € T. The
product x on p is defined so that p x p C § and uniquely determined by nonsingularity of the form on f and the associativity

(u,v X w) = (u X v,w).

The resulting nonassociative algebra is called a Griess algebra.
Its automorphism group is a monster group M.

The Monster group M acts as a group of automorphisms of V.
The subgroup of M preserving subspaces V/fo and VAG%, is the centralizer of the involution in M. It is an extension of the extraspecial
group /A\/K of order 2%° by Conway’s sporadic group Co; which is related to the Leech lattice A.
A crucial part of the Frenkel — Lepowsky — Meurman construction is to find an involution in the Monster M which acts on V? but
does not preserve the subspaces V7° and (V{)%.

The conformal vector w € V! lies in M-invariant 1-dim subspace Cw C Vlh. The complementary submodule of Cw in V1h gives
the smallest nontrivial representation of M of degree 196 883. This is an explanation of McKay’s observation.

The Monster vertex algebra V¥ is a graded module whose graded components have dimensions given by the coefficients of the
normalized j-function J(z). The Monster acts on each graded component.

On V%, the Jacobi identity takes a simple form for vertex operators parametrized by VX“.
Theorem. For v € VX"

Y(v,2) = Zvnz_"—l on V¥,
neZ

that is, Y (v, 2) involves only integral powers of z. For u,v € V" one has
[Y (u, 21) Xz Y (v, 22)]

= 2516 (Zl — ZQ) Y (u, 21)Y (v, 22) — 25 0 <22 — zl) Y (v, 22)Y (u, 21))

20

= z2_15 ('212—2«'0) Y (Y (u, z0)v, 22)
2

on V& In particular, V¥ is a vertex operator algebra of ventral charge 24 and (V{)% is a Vfo—module.

Borcherds Lie Algebra
A Lie algebra g over R is called a Borcherds algebra if
(i) 9 = D,y 9 has a Z-grading s.t. dim g; is finite Vi # 0.
(ii) There exists a linear map w: g — g s.t.
e w? =1 (the identity map on g); ® w(g;) =g_; Vi € Z; e w = —1 on go.
(iii) g has an invariant bilinear form (-,-) : g x g — R, s.t.
o (z,y)=0ifxeg;,ycg;andi+j#0; e (wr,wy) = (z,y) Vz,y € g; @ —(z,wz) >0if x € g;, 1 #0, x # 0.
These axioms imply that go is abelian and that the scalar product

()orexg—R: (z,9)0 = —(z,0y),

is positive definite on g; Vi # 0.
This (-, )¢ is called the contravariant bilinear form on g.
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Examples of Borcherds algebras
I. Universal Borcherds algebra (UBA). Let a = (a;;), i,j € I, be a symmetric matrix with a;; € R. The set I is assumed to
be either finite or countably infinite. Assume a to satisfy the conditions:
e a;; <0ifi#j, eif a; >0thenaf” €ZVjel.

There is a Borcherds algebra g associated to the matrix a. It is generated by elements e;, fj, hij, for 4,5 € I, subject to the
relations:
o e, fil = hij, o [hij, byl = 0, e [hij,ex] = dijaiker, o  [hij, fi] = —0i @ik [,
o if a;; > 0 and ¢ # j then (ade;)"e; = 0, (adfi)"f; = 0, where n = 1 — 2117 o if a; <0, aj; < 0 and a;; = 0, then
lei, e;] =0, [fi, f5] = 0.

This Lie algebra g can be graded by the condition dege; = n;, deg f; = —n,; for some n; € Z, .

There is an involution w : g — g : w(e;) = —fi, w(fi) = —e;.

There is also an invariant bilinear form uniquely determined by (e;, f;) = 1 for all ¢ € I. We write h; := hy;. Then, (e;, f;) = h;
and

(his hy) = (leis fil, hy) = (e, [fis Byl) = (eis aiifi) = ai;

for all i # j. Thus, (h;, h;) = a;; for all 4.5 € 1.

We see that the Lie algebra g satisfies the axioms of the Borcherds algebra. It is called the universal Borcherds algebra
associated with the matrix (a;;).
II. UBA from SKMA. Any symmetrizable Kac — Moody algebra over R gives rise to a universal Borcherds algebra. Let g be
the Kac — Moody algebra over R with symmetrizable GCM A = (A;;). Thus there exists a diagonal matrix D = diag{d:,...,d},
d; € Zy, s.t. DA is symmetric. Let a = (a;;) be given by a;; = d;A;;/2 for all 4,j. Then we have a;; = aj; and a; = d;.
Thus a;; < 0if i # j and a;; € Z4. Also 2a;5/a; = Aji;. Thus the symmetric matrix (a;;) satisfies the conditions needed to
construct a Borcherds algebra. The universal Borcherds algebra with symmetric matrix (a;;) coincides with the subalgebra of the
Kac — Moody algebra g obtained by generators and relations prior to the adjunction of the commutative algebra of outer derivations.

The difference between SKMA and UBA is that in a Borcherds algebra
1. The index set I may be countably infinite rather then finite;
2. The a;;’s may not be possible and need not lie in Z;
3. 2 ‘L is only assumed to lie in Z when a;; > 0.
The center of a UBA g lies in in the abelian subalgebra generated by the elements h;; and contains all h;; with ¢ # j.
It can be seen that h;; = 0 unless the i-th and j-th columns are equal. If we factor out the ideal J C g which lies in the center,
then g/J retains the structure of a Borcherds algebra. If we adjoin to g/J an abelian Lie algebra a of outer derivations we obtain
a Lie algebra g* = (g/J) - a where a C (g*)o and [e;, z] € Re;, [fi,x] € Rf; for all x € a.
g* retains the structure of a Borcherds algebra.

Why Universal?
For any Borcherds algebra g there are
v a unique UBA gy; v a (not necessarily unique!) homomorphism f: gy — g
s.t.
e ker f lies in the center of gy. @ im f is an ideal of g. e g is a semidirect product of im f with a commutative Lie algebra of outer
derivations lying in the 0-graded component of g and preserving all subspaces Re; and Rf;.
The homomorphism f preserves grading, involution and bilinear form.

Roots of universal Borcherds algebra
Let g be the universal Borcherds algebra.
Recall that the root lattice @ of f is a free abelian group with basis r;, for ¢ € J, with symmetric bilinear form

QxQ—R: (ryrj)— (ri,r) = aij.

The basis elements r; are called simple roots. We have a grading

g:@ga

acQ

determined by e; € g, fi € g—r,.
a € @ isaroot of gif a # 0 and g, # 0. The root « is positive if « is a sum of simple roots. For any root « either o or —« is
positive.
Let ® = &, U ®_ be the set of roots of g.
a € @ is real if {(a, &) > 0, and imaginary if (o, a) < 0.
Weyl group of Borcherds algebra
The Weyl group W of UBA g is the group of isometries of the root lattice Q@ generated by reflections w; corresponding to the simple
real roots.



Recall that 2(1” € Z since a;; > 0. Let h be the abelian subalgebra of g generated by the elements h;; for all ¢,5 € J.

There is a homomorphlsm of abelian groups Q — h: r; — h; preserving scalar product. This homomorphism need not to be
injective.

The root system and Weyl group of any Borcherds algebra g is defined to be that of the corresponding universal Borcherds
algebra.

Remarks on weight modules
Recall that if g is a finite dimensional simple Lie algebra over C, the irreducible finite dimensional g-modules are bijective to
dominant integral weights. A weight A € h* is dominant and integral iff A(h;) > 0 and \(h;) € Z Vi € J. X arises as highest weight
of this module where A\, € b* satisfy A > p iff A — p is a sum of simple roots.

Finite dimensional irreducible g-modules are also bijective to antidominant integral weights, i.e. which satisfy A(h;) <0 and
A(h;) €7Z Vi € J. There is a unique lowest weight for the module, and it is antidominant and integral. In the case of Borcherds
algebras, it is most convenient to consider lowest weight modules rather than highest ones.

Weyl’s and Kac’s character formulas
Recall that if g is a finite simple Lie algebra and A is an antidominant integral weight, the corresponding finite dimensional
irreducible lowest weight module M, has character given by the Weyl’s character formula

x(My)e? H (1—e%) = Z e(w)w(er),

aedt weW

where p = — ). w;, w; are positive real roots.
Next, suppose that g is a SKMA and A\ € b* is a weight satisfying A(h;) < 0, AM(h;) € Z Vi € J. Then g has a corresponding
irreducible lowest module M) whose character os given by Kac’s character formula

x(M)e? T (= exymette = 37 e(w)u(e*),

acd weW

where p € bh* is any element satisfying p(h;) = —1 Vi € J. This time the sum and the product may be infinite.

Borcherds’ character formula
Let g be Borcherds algebra and let A € Q ® R satisfy
o (\r)y<0VieJ; e 2% € Z for all i s.t. (ry,7;) > 0.
Then there is a corresponding irreducible lowest weight module M) with a character given by

X(My)e? H (1 — e)multe — Z e(w)w | e Z e(a)e

acdt wew acQ

where p € Q ® R satisfies (p,7;) = —4(r;,7;) > 0Vi € J s.t. (ry,7;) > 0, and e(a) = (—1)* if & € Q is a sum of k orthogonal simple
imaginary roots all orthogonal to A, and €(«) = 0 otherwise.
This formula reduces to Kac’s character formula in the case of SKMA since in this case there are no simple imaginary roots

and so
Z e(la)e® = 1.

a€eQ

In the special case A = 0, the module M) the module M) is the trivial 1-dimensional module and Borcherds’ character formula
becomes a Borcherds denominator identity:

e’ [ (=e)m e =" ew)w | e Y e(ae

acdt weW acQ
where p € Q ® R is any vector satisfying (p,r;) = —3(r;, ;) Vi € J.

Monster Lie Algebra
Start with the Monster Vertex Algebra V¥ which has a conformal vector of central charge 24. Replace it with a VOA of central
charge 26.

Let II be a lattice of rank 2 with a scalar product II x IT — Z defined by (b1,b1) =0, (b1,b2) = —1, (b, bs) = 0, where b1, bs is
a basis of II.

There is a vertex algebra Vi associated with II, with a conformal vector of central charge 2.

Form a tensor product V¥ @ Vi1. This is a vertex operator algebra with conformal vector w ® 1+ 1 ® wry of central charge 26,
for w and wy being conformal vectors for v® and Vi respectively.

Symmetric bilinear forms on V% and Vi define symmetric bilinear form on V¥ ® V.
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Define the subspaces

P! = {veV ® Vy|L(v) Li(v) = 0,i

=, 1}7
P’ = {veV ®Vu|Ly(v) =0,L;(v) =0,i>1}

VAR

The quotient (V* ® Vi1)/T(V® ® Vi) is a Lie algebra. [Borcherds R.E. Monstrous Moonshine and monstrous Lie superalgebras.
Invent. Math. 109: 405 — 444, 1992]
The space P'/T(V® @ Vi7) N P! can be identified with a Lie subalgebra of (V! ® Vi1)/T(V# ® Vi1). In fact, TP° C P! and
TP? =T(Vf® Vi) N PL Thus, P!/DP° has the structure of a Lie algebra.
The symmetric bilinear form on V¥ ® Vi1 induces one on P!, and TP lies in the radical of the induced form. Thus we obtain a
symmetric bilinear form on the Lie algebra P1/TP°.
Define
Pl/TP®
~ rad(-,-)
This is a Lie algebra called the Monster Lie algebra.
The vertex algebra Vi has a grading by elements of the lattice IT and induces gradings on V! ® Vi1 and on subquotient 9t by

elements of II:
M= @ iD/t(n,m)v

m,neEZ

where (m,n) is the graded component corresponding to mby 4+ nby € I1.

No-Ghost Theorem
Theorem. Suppose that
vV be a vector space with a nonsingular bilinear form (-, -), v the Virasoro algebra, v ~ V in such a way that
e the adjoint of L; is L_;;
e the central element of the Virasoro algebra acts as multiplication by 24;
e any vector of V is a sum of eigenvectors of Ly with nonnegative integral eigenvalues;
e all the eigenspaces of Ly are finite dimensional.
v' V;_1 be the subspace of V on which L¢ has eigenvalue 1.
v' G is a group, G ~ V preserves all this structure.
v Vi1 be the vertex algebra of the 2-dimensional even lattice II (so that Vi is II-graded, has a bilinear form (-,-), and v ~ Vp).
v P! be the subspace as defined before, and we let P! be the subspace of P! of degree a € IL.
v All these spaces inherit an action of G from the action G ~ V and the trivial action of G on Vi1 and R2.
Then the quotient of P! by the nullspace of its bilinear form is naturally isomorphic, as a G-module with an invariant bilinear
form, to

V ey ifa#0,
Vo ® R? fa=0

Remark. In the original statement of this theorem [Goddard P., Thorn C. B. Compatibility of the dual Pomeron with unitarity
and the absence of ghosts in the dual resonance model. Phys. Lett., B 40, No.2: 235 — 238 (1972)] V was part of underlying vector
space of vertex algebra of a positive definite lattice, so the inner product on V;_; was positive definite, and thus, P! had no vectors
of negative norm ("ghosts") for o # 0.

Sketch of a Proof [Borcherds R.E. Monstrous moonshine and monstrous Lie superalgebras. Invent. Math., 109: 405 — 444,
1992], [Goddard P., Thorn C. B. Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance
model. Phys. Lett., B 40, No.2: 235 — 238 (1972)]

Fix nonzero « € II and some norm 0 vector w € II with {a, w) # 0. There is an action v ~ V ® Vi1 with operators L; € v satisfying

[Li; L] = (i = j) Ly + % < LJ?: ! ) 95,026,
and the adjoint of L; is L_;.
Define operators K, for ¢ € Z, by K; = v;_; where v = e_5e" in the vertex algebra of II, and e¢* € RIII] corresponds to w € II,
and e~ " its inverse. K; satisfy [L;, K;] = —jK, ;. [K;, K;] = 0, since w has norm 0 and the adjoint of K; is K_;.
Define following subspaces in V & Vpg:
e H — subspace of degree o € I, H! = {h € H|Lo(h) = h}.
o P={he H|Li(h) = 0Vi >0}, P := H' N P.
e S — "space of spurious vectors", S = {h € H|h L. P}, St := H'n&.
e N = SN P is the radical of the bilinear form on P, and N' = H' N N.
o T — "transverse space", T = {p € P|K;p=0,i >0}, T' = H'NT.
e K is the space generated by the action of the operators K;,i > 0.
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e Ve*=V®e*CH.
There are inclusions of subspaces in H:

NN

The isomorphism V_ (4 q)/2 = P1/(N N P') is done by zigzagging up and down. We show that 1) Ve® and T are both isomorphic
to K mod its nullspace; 2) T" is isomorphic to P! mod its nullspace P! N N.

The theorem follows from the sequence of lemmas
Lemma 1. If f is a vector of nonzero norm in T, then the vectors of the form L, , Ly, ... K, Ky, ... (f) for all sequences of
.., 0>mn; >ny > ..., are linearly independent and span a space invariant under the operators K; and

integers 0 > my > mg >

L;, on which the bilinear form is nonsingular.
Lemma 2. The bilinear form on 7T is nonsingular, and K is the direct sum of T and the nullspace of K.

Lemma 3. Ve is naturally isomorphic to 7.
Lemma 4. The associative algebra generated by the elements L; for i < 0, is generated by elements which map S* into S.

Lemma 5. P! =T!' @ N
Applying the no-ghost theorem to the vertex algebra

M= P M

m,n€”Z

(where m,n mark the graded component corresponding to mb; + nbs € II) we conclude that for a € IT 9, & V_hm /2 for a # 0,

where
Vi ={ve Vi L(v) = (i + 1)v}.

Let oo = mby + nby € II. Since (a, a) = —2mn, then My, = V5, if o # (0,0). The no-ghost theorem asserts that Mgo = R2.
The graded components of the monster Lie algebra 9 are as follows

0 0 0 0 V)
0 0 0 0 1%
0 0 0 0

0o 0 o0 Vi 1%
0 0 0

N
OO OO O onen
c o oo owi@i@irﬁr
oo oo O,SHQSH§;<

o
(an]

The group ring R[II] of the lattice II has an involution

e — (=1) @/ 2e(—a)for o € TI.

It induces an involution on the vertex algebra Vi = S (E‘) ® R[] and hence an involution on V*® Vi1, which acts trivially on V¥,
Acting on a subquotient Mt of V¥ ® Vi it gives a map w : M — M s.t.

¢ =150 WMy = My, —n; ¢ w=—1on Myo; ® (wr,wy) = (z,y);

where (-, -) is the invariant bilinear form on 9. Moreover, the contravariant form (x,y)o = —(z,wy) for x,y € M is positive definite
on M, ,, for all (m,n) # (0,0).

Give a Z-grading to 9 by the formula deg M, , = 2m + n. Then Z-graded components are

-5 -4 -3 -2 -1 0 1 2 3 4 5
Vievi Vi ovioo VELRT VA 0 VPOV VeV

Hence 9 satisfies the axioms for a Borcherds algebra.
Let @ be a root lattice of the Borcherds algebra 9, h the Cartan subalgebra of 9.
Then h = My o = R?, and we have a map

Q—b.
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This map takes any simple root r; € @ to h; € b, and preserves the scalar product. Elements of h can be written in the form
mby + nba, m,n € Z. The images of simple roots in @ equal to

(1,-1),(1,1),(1,2),(1,3), (1,4),....

Thus 9 has infinitely many simple roots (they are not linearly independent). Since (mb; + nbe, mby + nby) = —2mn, (1, —1) gives
real simple root and other simple roots (1,n), n > 1, are imaginary.
There can be several simple roots mapping to a given (b; + nby) € h. The number of such elements in a multiplicity of (1,n).
The multiplicity of (1,n) equals
dim M, ,, = dim V;} = ¢,,,

where ¢, is the coefficient of the normalized Hauptmodul

J(2) =g+ caq”, q=e"

n>1

Thus
e (1,-1) has multiplicity 1,
e (1,1) has multiplicity 196 884,
e (1,2) has multiplicity 21493 760,
° ...
and the sum of the simple root spaces in 9t is isomorphic to the Moonshine module V7.
Hence, the Monster Lie algebra 9t is contained in the Monster vertex algebra V% as the sum of its root spaces corresponding to
simple roots.
The symmetric matrix (a;;) corresponding to the Borcherds algebra 9 is thus a countable matrix with many repeated rows
and columns.
Since 9 has only one simple root, its Weyl group has order 2. Any root of 9t maps to an element mb; + nbs € b s.t. Moy o # 0 and
(m,n) # (0,0). The multiplicity of (m,n) is then dim M, ,, = dim V,3,, = cyn.

Denominator identities for Monster Lie algebra
Consider the homomorphism @ — b sending simple roots to . We call images of roots in b as roots also. For Monster Lie algebra
I simple roots in b are mby +nby € Z, m,n € Z and mn > 0 or mn = —1. If there are k roots in () mapping to the same root in b,
this root in h has multiplicity k. We know that simple roots of 9t are (1, —1),(1,1),(1,2),(1,3),..., and we could take p = (—1,0)
because ((—1,1),(1,n)) =n, ((1,n),(1,n)) = —2n for all n, so that (p,r;) = —%(r;,r;) for each simple root r;. Also we know that
the root (m,n) has multiplicity exactly ¢;n.
Let p = e1:9 and g = e(®1). We have e? = ¢~ (1.0) = p~ L, so left hand side of the Borcherds identity becomes

pt I a-pmgtyer.

m>0,n€EZ

remember also that for a € Q e(a) = (—1)* if a is the sum of k imaginary orthogonal simple roots, and e(a) = 0 otherwise.

For the Monster Lie algebra 91 there are no two imaginary simple roots, because ((1,m), (1,n)) = —m—n < 0 Vm,n € Z. Thus
the elements a € @ contributing to the sum )" e(a)e® are o = 0 with €(a) = 1, and all imaginary simple roots (1,n) € h, n € N.
Since there are precisely ¢, of these roots in @ (mapping to (1,7)) and all of them have e(a) = —1,

Z e(a)e* =1— Z enpq"™.
acQ n>0

Also [W| =2 and W = {1, s}, s(p) = ¢, s(q) = p. Thus right hand side of the Borcherds identity is

Z e(ww | €’ Z e(a)e™ | = Z e(w)w (p_l <1 — Zc,mq”)) =

S e wew n>0
(pl -2 %p”) - (ql -2 Cw”) =3i(p) = (@)
n>0 n>0

Combining left hand side and right hand side one gets Zagier’s identity

vt I - =) - ie).

m>0,n€Z
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Twisted denominator identity
To complete the proof of the Moonshine conjecture we need a generalization if the Zagier’s identity.
Let U be a finite-dimensional R-vector space with a graded decomposition

U:@Ua

acl

for a lattice L.
The graded dimension if U is grdimU =} _; (dim U, )e® € R[L] where R[L] is a group algebra of L with basis L, for a € L.

Let A" UV = {k-linear alternate forms w : U x --- x U — R}, for k > 0 and A" UV = R. One has

k
Z(—l)kgrdim /\ U = H (1 — ex)dimUs, (3)

k>0 acl

The right hand side can be written as exp (— ;o0 + Doaer (dimUa)eF®) (this can be verified moving backwards and using the
Taylor expansion of log(1 + z)).
Let G be a finite group and U be a G-module s.t. G ~ U, Va € L.

The graded character of a G-module U is

grxU :G —R[L]: g — Ztrace(g\Ua)ea.

Then the alternate sum Zkzo(—l)kgrx A" UV is given by the map

1 k ka
—exp | — — trace U,)e .
g exp ( k§>:0 i’ (;L (9"Ua) )
When g = 1 this map reduces to the dimension formula (3). If U is an infinite dimensional vector space and U = @ U, is its
graded decomposition s.t. each graded component is finite dimensional, then the formulae are still valid.

Let g be a Borcherds algebra with triangular decomposition g = n* @ b © n~ where n* = Y acot Ja (b can be infinite
dimensional but each g, is finite dimensional). Consider a complex of vector spaces

acl

3 2 1 0
‘A/\(rﬁ’)\/g/\(rﬁ*)\/g/\(nﬁ*)Vi}/\(n#’)\/ﬂ)O
with homology groups

ker dk

Hgn™ = - ,
imdgy

k>0.

Here A\"(n*)Y and Hyn™ are graded vector spaces with finite dimensional graded components. Obviously,

k
> (=1Fgrdim A\(mT)Y = " (~1)*grdim Hyn'.

k>0 k>0

Garland and Lepowky proved that for KMA (and also it is true for Borcherds algebras) Hynt can be identified with a subspace of

A ()Y as follows:
ot = { (N0 i ot p.a+0) = (p.p),
0 in other case

This holds for each « in the root lattice of g.
For the monster Lie algebra g = 91 the graded dimension formula takes the view

k
Z(—l)kgrdim /\93?+ = H (1 — p™g™)emn

k>0 (m,n),m>0

where p = e(10) | g = (@1 and M* = >wcaor Ma.
We compute Y, -, (—1)*grdim H, 0"

grdim Hymt = e i.e. A\’ M+ = R is 1-dimensional with weight € since (0 + p, 0+ p) = (p, p).
Next, direct computations lead to

grdim Hym+ = Z cnpq”,
nez
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grdim Hom+ = Z Cm_1p™
m>2

grdim H;9M" =0
for k£ > 3. Thus we have

Z(—l)kgrdim Homt = — Z enpq" + Z Cm—1p" =

k>0 nez m>2

60+chmpm—chnq”:e°+p(Z cmpm—p1> —pY_enq" =

m>1 neE”L mMEZL ne”Z
p(i(p) —j(q))

and we have derived the denominator identity.
In order to obtain the twisted denominator identity, consider 9™ as an M-module for the Monster group M. Start from the
equality

k
> (=1)Fgrdim A\@F)Y = (~1)"grdim Hy(9F).

k>0 k>0
The left hand side is the map

g+ exp (— Z % Z trace(gk|(§m+)a)eka>

k>0 aedt

for g € M. Replacing all dimensions by characters in the computations of Hi 9", we get

Zgrkam ) (Z trace g|Vh Z trace g|Vh) )
k

nez nez

Comparing two recent formulae we get twisted denominator identity for the monster Lie algebra I

“leap Z > trace(g"|VE,p™ ™) | =

k>0 (m,n),m>0

Z trace(g|V,H)p" — Z trace(g|V;i)q"

nez neZ

Denoting c,(n) := trace(g|V,?) we get

“leap Z > e mn)p™ ) | =D egn)p” = eg(n)g"

k>0 (m,n),m>0 nez neL

Replication formulae
By comparing the coefficients of p? and p* in the twisted denominator identity Borcherds derived the replication formulae.

To complete the proof, it remains to show that the coefficients ¢4 (1), ¢g(2), ¢4(3) and ¢4(5) of the McKay — Thompson series
T4(2z) agree with right hand sides of (2). To obtain the coefficients for the graded characters T,(z) it is sufficient to know how the
modules V1, V5, V3 and V5 for the Monster M, with dimensions c¢1, co, c3 and c¢5 respectively, decompose into irreducible modules.
The only irreducible characters of M less then or equal to ¢; = dim Vs are xo, X1, - - - , X6, thus these are the only possible irreducible
components of Vi, Va, Vs, V. Borcherds proved that dim Vi = xo + x1, dim Vo = xo0 + x1 + X2, dim Vs = 2x0 + 2x1 + X2 + X3,
dim V5 = 4x0+5x1 + 3x2 + 2Xx3 + X4 + X5 + X6, where Xxo, ..., xs are first 6 irreducible characters of M. This was proved by finding
7 elements g1, ... g7 for which the 7 x 7-matrix x;(g;) is nonsingular and by showing that the above equations hold for each g;.
Then they hold for all g € M.

Remarks on a group
Not only the Monster but other sporadic simple groups were discussed including the Baby Monster B, the Conway group Co;, the
Fisher group F'i},, the Harada — Norton group HN, the Held group He, and the Mathieu group Mjs. Denominator identities for
these groups are also obtained. Thus the Monstrous Moonshine is not restricted by the Monster group M.

Why genus 07
For a formal series f(z) = ¢~' + >, b,q", an order-n modular equation for f is a monic polynomial F,(z,y), deg F,, =

] Lrimes pn (1 +1/p) .t
Ey (f(Z),f (azib» =0

for all a,b,d € Z, ad = n, ged(a,b,d) =1, and 0 < b < d.
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The degree deg F}, is precisely the the number of triples a, b, d. This triples come from the coset expansion
ro(K) (" 0 ) ro(x) = LA B ING

for any K obeying n = 1(mod K).

Theorem. Let f(z) be a formal series ¢~ + > °7 | b,q™, b; € C. Suppose f satisfies a modular equation of order n for all
n = 1(mod N). Then
(a) f converges to a holomorphic function on H,

(b) if the symmetry group I'(f) := {g € SL2(R)|f(g92z) = f(2)} consists only of translations + ( é i ), then f(z) = ¢! + &q for
some & € C. If € is an algebraic number, then &€ = 0 or £8¢4C4N) — 1.

(c) if the symmetry group does not only contains translations, then T'(f) is genus 0 and f is a Hauptmodul for T'(f). Moreover,
['(f) contains some subgroup T'o(K) for K|N°.

K|N* means that all primes dividing K also divide N.

Conjecture.[Cohn, McKay, Cummins] Let ¢~ +>°°7 | b,,¢™ be a formal series and p, p’ are distinct primes. If f satisfies modular
equations for both p and p’, then f converges in H to a holomorphic function, and either f(z) = ¢~ + &q for §g‘3d(p_1’p/_1)+1 =¢,
or f is the Hauptmodul for a genus-0 group containing I'(N) for N coprime to pp’.

Strenghtening Moonshine
1987 Norton proposed a strengthening of the Monstrous Moonshine Conjecture. Among the assertions is the existence of the rule
that produces special modular functions (Hauptmoduls) from commuting pairs of elements of the Monster.

The Borcherds — Hohn program proposed a way to obtain such a rule by constructing infinite-dimensional Lie algebras attached
to elements of the Monster. These Lie algebras are expacted to manifest as algebras physical states in an orbifold conformal field
theory (yet to be fully constructed with symmetries given by the Monster).

Umbral Moonshine
Cheng, Duncan, Harvey: M4 moonshine and others; in whole 23 moonshines relating groups to mock modular forms.

They conjectured that for each of those moonshines there is a string theory like the one for Monstrous moonshine, in which he
mock modular form counts string states, and the group captures the model’s symmetry.

A mock modular form always has an associated modular function named the "shadow": they named their conjectures as Umbral
Moonshine.

Many of the mock modular forms that appear in the conjecture are among the 17 special examples in the paper of Ramanujan
about "mock theta functions".

Umbral moonshine is related to 23 Niemeier lattices. [Cheng M., Duncan J..& Harvey J. Research in Math. Sci., 1:3, 2014;
Comm. Number Theory and Phys., 8, 2014].
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