
Synchronizing Finite Automata

II-III. The Road Coloring Problem

Mikhail Volkov

Ural Federal University, Ekaterinburg, Russia

Mikhail Volkov Synchronizing Finite Automata

Recap

Deterministic finite automata (DFA): A = 〈Q,Σ, δ〉.
• Q the state set
• Σ the input alphabet
• δ : Q ×Σ → Q the transition function

A is called synchronizing if there exists a word w ∈ Σ∗ whose
action resets A , that is, leaves the automaton in one particular
state no matter which state in Q it started at: δ(q,w) = δ(q′,w)
for all q, q′ ∈ Q.
|Q .w | = 1. Here Q . v = {δ(q, v) | q ∈ Q}.

Any w with this property is a reset word for A .

Mikhail Volkov Synchronizing Finite Automata

Recap

Deterministic finite automata (DFA): A = 〈Q,Σ, δ〉.
• Q the state set
• Σ the input alphabet
• δ : Q ×Σ → Q the transition function

A is called synchronizing if there exists a word w ∈ Σ∗ whose
action resets A , that is, leaves the automaton in one particular
state no matter which state in Q it started at: δ(q,w) = δ(q′,w)
for all q, q′ ∈ Q.
|Q .w | = 1. Here Q . v = {δ(q, v) | q ∈ Q}.

Any w with this property is a reset word for A .

Mikhail Volkov Synchronizing Finite Automata

Recap

Deterministic finite automata (DFA): A = 〈Q,Σ, δ〉.
• Q the state set
• Σ the input alphabet
• δ : Q ×Σ → Q the transition function

A is called synchronizing if there exists a word w ∈ Σ∗ whose
action resets A , that is, leaves the automaton in one particular
state no matter which state in Q it started at: δ(q,w) = δ(q′,w)
for all q, q′ ∈ Q.
|Q .w | = 1. Here Q . v = {δ(q, v) | q ∈ Q}.

Any w with this property is a reset word for A .

Mikhail Volkov Synchronizing Finite Automata

Recap

Deterministic finite automata (DFA): A = 〈Q,Σ, δ〉.
• Q the state set
• Σ the input alphabet
• δ : Q ×Σ → Q the transition function

A is called synchronizing if there exists a word w ∈ Σ∗ whose
action resets A , that is, leaves the automaton in one particular
state no matter which state in Q it started at: δ(q,w) = δ(q′,w)
for all q, q′ ∈ Q.
|Q .w | = 1. Here Q . v = {δ(q, v) | q ∈ Q}.

Any w with this property is a reset word for A .

Mikhail Volkov Synchronizing Finite Automata

Example

0 1

23

a

b

b

b

b

a

aa

A reset word is abbbabbba. In fact, it is the shortest reset word for
this automaton.

The Černý Conjecture: each synchronizing automaton with n

states has a reset word of length (n − 1)2.

Mikhail Volkov Synchronizing Finite Automata

Example

0 1

23

a

b

b

b

b

a

aa

A reset word is abbbabbba. In fact, it is the shortest reset word for
this automaton.

The Černý Conjecture: each synchronizing automaton with n

states has a reset word of length (n − 1)2.

Mikhail Volkov Synchronizing Finite Automata

Example

0 1

23

a

b

b

b

b

a

aa

A reset word is abbbabbba. In fact, it is the shortest reset word for
this automaton.

The Černý Conjecture: each synchronizing automaton with n

states has a reset word of length (n − 1)2.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Studying synchronizing automata, it is natural to restrict to the
strongly connected case. For instance, it suffices to prove the
Černý conjecture for this case, the general case would be an easy
consequence.

Let A = 〈Q,Σ, δ〉 be a synchronizing automaton with n states.
Consider the set S of all states to which A can be synchronized
and let m = |S |. If q ∈ S , then there exists a reset word w ∈ Σ∗

such that Q.w = {q}. For each a ∈ Σ, we have Q.wa = {q . a}
whence wa also is a reset word and δ(q, a) ∈ S . Thus, restricting
the function δ to S × Σ, we get a subautomaton S with the state
set S . Obviously, S is synchronizing and strongly connected.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Studying synchronizing automata, it is natural to restrict to the
strongly connected case. For instance, it suffices to prove the
Černý conjecture for this case, the general case would be an easy
consequence.

Let A = 〈Q,Σ, δ〉 be a synchronizing automaton with n states.
Consider the set S of all states to which A can be synchronized
and let m = |S |. If q ∈ S , then there exists a reset word w ∈ Σ∗

such that Q.w = {q}. For each a ∈ Σ, we have Q.wa = {q . a}
whence wa also is a reset word and δ(q, a) ∈ S . Thus, restricting
the function δ to S × Σ, we get a subautomaton S with the state
set S . Obviously, S is synchronizing and strongly connected.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Studying synchronizing automata, it is natural to restrict to the
strongly connected case. For instance, it suffices to prove the
Černý conjecture for this case, the general case would be an easy
consequence.

Let A = 〈Q,Σ, δ〉 be a synchronizing automaton with n states.
Consider the set S of all states to which A can be synchronized
and let m = |S |. If q ∈ S , then there exists a reset word w ∈ Σ∗

such that Q.w = {q}. For each a ∈ Σ, we have Q.wa = {q . a}
whence wa also is a reset word and δ(q, a) ∈ S . Thus, restricting
the function δ to S × Σ, we get a subautomaton S with the state
set S . Obviously, S is synchronizing and strongly connected.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Studying synchronizing automata, it is natural to restrict to the
strongly connected case. For instance, it suffices to prove the
Černý conjecture for this case, the general case would be an easy
consequence.

Let A = 〈Q,Σ, δ〉 be a synchronizing automaton with n states.
Consider the set S of all states to which A can be synchronized
and let m = |S |. If q ∈ S , then there exists a reset word w ∈ Σ∗

such that Q.w = {q}. For each a ∈ Σ, we have Q.wa = {q . a}
whence wa also is a reset word and δ(q, a) ∈ S . Thus, restricting
the function δ to S × Σ, we get a subautomaton S with the state
set S . Obviously, S is synchronizing and strongly connected.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Studying synchronizing automata, it is natural to restrict to the
strongly connected case. For instance, it suffices to prove the
Černý conjecture for this case, the general case would be an easy
consequence.

Let A = 〈Q,Σ, δ〉 be a synchronizing automaton with n states.
Consider the set S of all states to which A can be synchronized
and let m = |S |. If q ∈ S , then there exists a reset word w ∈ Σ∗

such that Q.w = {q}. For each a ∈ Σ, we have Q.wa = {q . a}
whence wa also is a reset word and δ(q, a) ∈ S . Thus, restricting
the function δ to S × Σ, we get a subautomaton S with the state
set S . Obviously, S is synchronizing and strongly connected.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

If the Černý conjecture holds true for strongly connected
synchronizing automata, S has a reset word v of length (m − 1)2.

Now consider the partition π of Q into n −m + 1 classes one of
which is S and all others are singletons. Then π is a congruence
of the automaton A .

We recall the notion of a congruence and the related notion of the
quotient automaton w.r.t. a congruence in the next slide. They
will be essentially used in this lecture!

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

If the Černý conjecture holds true for strongly connected
synchronizing automata, S has a reset word v of length (m − 1)2.

Now consider the partition π of Q into n −m + 1 classes one of
which is S and all others are singletons. Then π is a congruence
of the automaton A .

We recall the notion of a congruence and the related notion of the
quotient automaton w.r.t. a congruence in the next slide. They
will be essentially used in this lecture!

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

If the Černý conjecture holds true for strongly connected
synchronizing automata, S has a reset word v of length (m − 1)2.

Now consider the partition π of Q into n −m + 1 classes one of
which is S and all others are singletons. Then π is a congruence
of the automaton A .

We recall the notion of a congruence and the related notion of the
quotient automaton w.r.t. a congruence in the next slide. They
will be essentially used in this lecture!

Mikhail Volkov Synchronizing Finite Automata

Congruences and Quotient Automata

An equivalence π on the state set Q of a DFA A = 〈Q,Σ, δ〉 is
called a congruence if (p, q) ∈ π implies

(

δ(p, a), δ(q, a)
)

∈ π for
all p, q ∈ Q and all a ∈ Σ. For π being a congruence, [q]π is the
π-class containing the state q.
The quotient A /π is the DFA 〈Q/π,Σ, δπ〉 where
Q/π = {[q]π | q ∈ Q} and the function δπ is defined by the rule
δπ([q]π, a) = [δ(q, a)]π .

Mikhail Volkov Synchronizing Finite Automata

Congruences and Quotient Automata

An equivalence π on the state set Q of a DFA A = 〈Q,Σ, δ〉 is
called a congruence if (p, q) ∈ π implies

(

δ(p, a), δ(q, a)
)

∈ π for
all p, q ∈ Q and all a ∈ Σ. For π being a congruence, [q]π is the
π-class containing the state q.
The quotient A /π is the DFA 〈Q/π,Σ, δπ〉 where
Q/π = {[q]π | q ∈ Q} and the function δπ is defined by the rule
δπ([q]π, a) = [δ(q, a)]π .

Mikhail Volkov Synchronizing Finite Automata

Congruences and Quotient Automata

An equivalence π on the state set Q of a DFA A = 〈Q,Σ, δ〉 is
called a congruence if (p, q) ∈ π implies

(

δ(p, a), δ(q, a)
)

∈ π for
all p, q ∈ Q and all a ∈ Σ. For π being a congruence, [q]π is the
π-class containing the state q.
The quotient A /π is the DFA 〈Q/π,Σ, δπ〉 where
Q/π = {[q]π | q ∈ Q} and the function δπ is defined by the rule
δπ([q]π, a) = [δ(q, a)]π .

1

3

2

4

a a

a a

b
b

b
b

Mikhail Volkov Synchronizing Finite Automata

Congruences and Quotient Automata

An equivalence π on the state set Q of a DFA A = 〈Q,Σ, δ〉 is
called a congruence if (p, q) ∈ π implies

(

δ(p, a), δ(q, a)
)

∈ π for
all p, q ∈ Q and all a ∈ Σ. For π being a congruence, [q]π is the
π-class containing the state q.
The quotient A /π is the DFA 〈Q/π,Σ, δπ〉 where
Q/π = {[q]π | q ∈ Q} and the function δπ is defined by the rule
δπ([q]π, a) = [δ(q, a)]π .

1

3

2

4

a a

a a

b
b

b
b

π

Mikhail Volkov Synchronizing Finite Automata

Congruences and Quotient Automata

An equivalence π on the state set Q of a DFA A = 〈Q,Σ, δ〉 is
called a congruence if (p, q) ∈ π implies

(

δ(p, a), δ(q, a)
)

∈ π for
all p, q ∈ Q and all a ∈ Σ. For π being a congruence, [q]π is the
π-class containing the state q.
The quotient A /π is the DFA 〈Q/π,Σ, δπ〉 where
Q/π = {[q]π | q ∈ Q} and the function δπ is defined by the rule
δπ([q]π, a) = [δ(q, a)]π .

1

3

2

4

a a

a a

b
b

b
b

π

Mikhail Volkov Synchronizing Finite Automata

Congruences and Quotient Automata

An equivalence π on the state set Q of a DFA A = 〈Q,Σ, δ〉 is
called a congruence if (p, q) ∈ π implies

(

δ(p, a), δ(q, a)
)

∈ π for
all p, q ∈ Q and all a ∈ Σ. For π being a congruence, [q]π is the
π-class containing the state q.
The quotient A /π is the DFA 〈Q/π,Σ, δπ〉 where
Q/π = {[q]π | q ∈ Q} and the function δπ is defined by the rule
δπ([q]π, a) = [δ(q, a)]π .

1

3

2

4

a a

a a

b
b

b
b

π
1,2

3,4

b

a

a b

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Return to our reasoning: let π be the partition of Q into n−m+1
classes one of which is S and all others are singletons. Then π is a
congruence of A .
Clearly, the quotient A /π is synchronizing and has S as a unique
sink.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Return to our reasoning: let π be the partition of Q into n−m+1
classes one of which is S and all others are singletons. Then π is a
congruence of A .
Clearly, the quotient A /π is synchronizing and has S as a unique
sink.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Return to our reasoning: let π be the partition of Q into n−m+1
classes one of which is S and all others are singletons. Then π is a
congruence of A .
Clearly, the quotient A /π is synchronizing and has S as a unique
sink.

S

Σ

Mikhail Volkov Synchronizing Finite Automata

Automata with a Unique Sink

If a synchronizing automaton with k states has a unique sink, then
it has a reset word of length ≤ k(k−1)

2 .

The algorithm makes at most k − 1 steps and the length of the
segment added in the step when t states still hold coins
(k − 1 ≥ t ≥ 1) is at most k − t. The total length is

≤ 1 + 2 + · · · + (k − 1) = k(k−1)
2 .

Mikhail Volkov Synchronizing Finite Automata

Automata with a Unique Sink

If a synchronizing automaton with k states has a unique sink, then
it has a reset word of length ≤ k(k−1)

2 .

0a, b

a

a

a

b

b

b

b
a a b

b

a

The algorithm makes at most k − 1 steps and the length of the
segment added in the step when t states still hold coins
(k − 1 ≥ t ≥ 1) is at most k − t. The total length is

≤ 1 + 2 + · · · + (k − 1) = k(k−1)
2 .

Mikhail Volkov Synchronizing Finite Automata

Automata with a Unique Sink

If a synchronizing automaton with k states has a unique sink, then
it has a reset word of length ≤ k(k−1)

2 .

0a, b

a

a

a

b

b

b

b
a a b

b

a

The algorithm makes at most k − 1 steps and the length of the
segment added in the step when t states still hold coins
(k − 1 ≥ t ≥ 1) is at most k − t. The total length is

≤ 1 + 2 + · · · + (k − 1) = k(k−1)
2 .

Mikhail Volkov Synchronizing Finite Automata

Automata with a Unique Sink

If a synchronizing automaton with k states has a unique sink, then
it has a reset word of length ≤ k(k−1)

2 .

0a, b

a

a

a

b

b

b

b
a a b

b

a

a

The algorithm makes at most k − 1 steps and the length of the
segment added in the step when t states still hold coins
(k − 1 ≥ t ≥ 1) is at most k − t. The total length is

≤ 1 + 2 + · · · + (k − 1) = k(k−1)
2 .

Mikhail Volkov Synchronizing Finite Automata

Automata with a Unique Sink

If a synchronizing automaton with k states has a unique sink, then
it has a reset word of length ≤ k(k−1)

2 .

0a, b

a

a

a

b

b

b

b
a a b

b

a

The algorithm makes at most k − 1 steps and the length of the
segment added in the step when t states still hold coins
(k − 1 ≥ t ≥ 1) is at most k − t. The total length is

≤ 1 + 2 + · · · + (k − 1) = k(k−1)
2 .

Mikhail Volkov Synchronizing Finite Automata

Automata with a Unique Sink

If a synchronizing automaton with k states has a unique sink, then
it has a reset word of length ≤ k(k−1)

2 .

0a, b

a

a

a

b

b

b

b
a a b

b

a

a

b

b

The algorithm makes at most k − 1 steps and the length of the
segment added in the step when t states still hold coins
(k − 1 ≥ t ≥ 1) is at most k − t. The total length is

≤ 1 + 2 + · · · + (k − 1) = k(k−1)
2 .

Mikhail Volkov Synchronizing Finite Automata

Automata with a Unique Sink

If a synchronizing automaton with k states has a unique sink, then
it has a reset word of length ≤ k(k−1)

2 .

0a, b

a

a

a

b

b

b

b
a a b

b

a

The algorithm makes at most k − 1 steps and the length of the
segment added in the step when t states still hold coins
(k − 1 ≥ t ≥ 1) is at most k − t. The total length is

≤ 1 + 2 + · · · + (k − 1) = k(k−1)
2 .

Mikhail Volkov Synchronizing Finite Automata

Automata with a Unique Sink

If a synchronizing automaton with k states has a unique sink, then
it has a reset word of length ≤ k(k−1)

2 .

0a, b

a

a

a

b

b

b

b
a a b

b

a

a

b

ba
bb

The algorithm makes at most k − 1 steps and the length of the
segment added in the step when t states still hold coins
(k − 1 ≥ t ≥ 1) is at most k − t. The total length is

≤ 1 + 2 + · · · + (k − 1) = k(k−1)
2 .

Mikhail Volkov Synchronizing Finite Automata

Automata with a Unique Sink

If a synchronizing automaton with k states has a unique sink, then
it has a reset word of length ≤ k(k−1)

2 .

0a, b

a

a

a

b

b

b

b
a a b

b

a

The algorithm makes at most k − 1 steps and the length of the
segment added in the step when t states still hold coins
(k − 1 ≥ t ≥ 1) is at most k − t. The total length is

≤ 1 + 2 + · · · + (k − 1) = k(k−1)
2 .

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Return to our reasoning: the quotient A /π is synchronizing with a
unique sink and has n−m + 1 states. Hence, A /π has a reset

word u of length (n−m+1)(n−m)
2 . Then Q . u ⊆ S .

Recall that we have assumed that the automaton S has a reset
word v of length (m − 1)2. Then S .v is a singleton, whence also
Q.uv ⊆ S .v is a singleton. Thus, uv is a reset word for A , and
the length of this word does not exceed

(n −m + 1)(n −m)

2
+ (m − 1)2 ≤ (n − 1)2.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Return to our reasoning: the quotient A /π is synchronizing with a
unique sink and has n−m + 1 states. Hence, A /π has a reset

word u of length (n−m+1)(n−m)
2 . Then Q . u ⊆ S .

Recall that we have assumed that the automaton S has a reset
word v of length (m − 1)2. Then S .v is a singleton, whence also
Q.uv ⊆ S .v is a singleton. Thus, uv is a reset word for A , and
the length of this word does not exceed

(n −m + 1)(n −m)

2
+ (m − 1)2 ≤ (n − 1)2.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Return to our reasoning: the quotient A /π is synchronizing with a
unique sink and has n−m + 1 states. Hence, A /π has a reset

word u of length (n−m+1)(n−m)
2 . Then Q . u ⊆ S .

Recall that we have assumed that the automaton S has a reset
word v of length (m − 1)2. Then S .v is a singleton, whence also
Q.uv ⊆ S .v is a singleton. Thus, uv is a reset word for A , and
the length of this word does not exceed

(n −m + 1)(n −m)

2
+ (m − 1)2 ≤ (n − 1)2.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Return to our reasoning: the quotient A /π is synchronizing with a
unique sink and has n−m + 1 states. Hence, A /π has a reset

word u of length (n−m+1)(n−m)
2 . Then Q . u ⊆ S .

Recall that we have assumed that the automaton S has a reset
word v of length (m − 1)2. Then S .v is a singleton, whence also
Q.uv ⊆ S .v is a singleton. Thus, uv is a reset word for A , and
the length of this word does not exceed

(n −m + 1)(n −m)

2
+ (m − 1)2 ≤ (n − 1)2.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Return to our reasoning: the quotient A /π is synchronizing with a
unique sink and has n−m + 1 states. Hence, A /π has a reset

word u of length (n−m+1)(n−m)
2 . Then Q . u ⊆ S .

Recall that we have assumed that the automaton S has a reset
word v of length (m − 1)2. Then S .v is a singleton, whence also
Q.uv ⊆ S .v is a singleton. Thus, uv is a reset word for A , and
the length of this word does not exceed

(n −m + 1)(n −m)

2
+ (m − 1)2 ≤ (n − 1)2.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Return to our reasoning: the quotient A /π is synchronizing with a
unique sink and has n−m + 1 states. Hence, A /π has a reset

word u of length (n−m+1)(n−m)
2 . Then Q . u ⊆ S .

Recall that we have assumed that the automaton S has a reset
word v of length (m − 1)2. Then S .v is a singleton, whence also
Q.uv ⊆ S .v is a singleton. Thus, uv is a reset word for A , and
the length of this word does not exceed

(n −m + 1)(n −m)

2
+ (m − 1)2 ≤ (n − 1)2.

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Thus, we assume that our synchronizing automata are strongly
connected as digraphs.
Observe that such an automaton can be reset to any state. That
is, to every state q of the automaton one can assign an instruction
(a reset word) wq such that following wq one will surely arrive at q
from any initial state.

ab3ab3a

ab3ab3abab3ab3ab2

ab3ab3ab3

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Thus, we assume that our synchronizing automata are strongly
connected as digraphs.
Observe that such an automaton can be reset to any state. That
is, to every state q of the automaton one can assign an instruction
(a reset word) wq such that following wq one will surely arrive at q
from any initial state.

ab3ab3a

ab3ab3abab3ab3ab2

ab3ab3ab3

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Thus, we assume that our synchronizing automata are strongly
connected as digraphs.
Observe that such an automaton can be reset to any state. That
is, to every state q of the automaton one can assign an instruction
(a reset word) wq such that following wq one will surely arrive at q
from any initial state.

ab3ab3a

ab3ab3abab3ab3ab2

ab3ab3ab3

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Thus, we assume that our synchronizing automata are strongly
connected as digraphs.
Observe that such an automaton can be reset to any state. That
is, to every state q of the automaton one can assign an instruction
(a reset word) wq such that following wq one will surely arrive at q
from any initial state.

0 1

23

a

b

b

b

b

a

aa

ab3ab3a

ab3ab3abab3ab3ab2

ab3ab3ab3

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Thus, we assume that our synchronizing automata are strongly
connected as digraphs.
Observe that such an automaton can be reset to any state. That
is, to every state q of the automaton one can assign an instruction
(a reset word) wq such that following wq one will surely arrive at q
from any initial state.

0 1

23

a

b

b

b

b

a

aa

ab3ab3a

ab3ab3abab3ab3ab2

ab3ab3ab3

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Thus, we assume that our synchronizing automata are strongly
connected as digraphs.
Observe that such an automaton can be reset to any state. That
is, to every state q of the automaton one can assign an instruction
(a reset word) wq such that following wq one will surely arrive at q
from any initial state.

0 1

23

a

b

b

b

b

a

aa

ab3ab3a

ab3ab3abab3ab3ab2

ab3ab3ab3

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Thus, we assume that our synchronizing automata are strongly
connected as digraphs.
Observe that such an automaton can be reset to any state. That
is, to every state q of the automaton one can assign an instruction
(a reset word) wq such that following wq one will surely arrive at q
from any initial state.

0 1

23

a

b

b

b

b

a

aa

ab3ab3a

ab3ab3abab3ab3ab2

ab3ab3ab3

Mikhail Volkov Synchronizing Finite Automata

Strongly Connected Digraphs

Thus, we assume that our synchronizing automata are strongly
connected as digraphs.
Observe that such an automaton can be reset to any state. That
is, to every state q of the automaton one can assign an instruction
(a reset word) wq such that following wq one will surely arrive at q
from any initial state.

0 1

23

a

b

b

b

b

a

aa

ab3ab3a

ab3ab3abab3ab3ab2

ab3ab3ab3

Mikhail Volkov Synchronizing Finite Automata

Example

Now think of the automaton as of a scheme of a transport network
in which arrows correspond to roads and labels are treated as
colors of the roads.

Then for each node there is a sequence of colors that brings one to
the chosen node from anywhere.

Mikhail Volkov Synchronizing Finite Automata

Example

Now think of the automaton as of a scheme of a transport network
in which arrows correspond to roads and labels are treated as
colors of the roads.

Then for each node there is a sequence of colors that brings one to
the chosen node from anywhere.

Mikhail Volkov Synchronizing Finite Automata

Example

Now think of the automaton as of a scheme of a transport network
in which arrows correspond to roads and labels are treated as
colors of the roads.

Then for each node there is a sequence of colors that brings one to
the chosen node from anywhere.

Mikhail Volkov Synchronizing Finite Automata

Solution to the Example

For the green node: blue-blue-red-blue-blue-red-blue-blue-red.

For the yellow node: blue-red-red-blue-red-red-blue-red-red.

Mikhail Volkov Synchronizing Finite Automata

Solution to the Example

For the green node: blue-blue-red-blue-blue-red-blue-blue-red.

For the yellow node: blue-red-red-blue-red-red-blue-red-red.

Mikhail Volkov Synchronizing Finite Automata

Solution to the Example

For the green node: blue-blue-red-blue-blue-red-blue-blue-red.

For the yellow node: blue-red-red-blue-red-red-blue-red-red.

Mikhail Volkov Synchronizing Finite Automata

Road Coloring

Now suppose that we have a transport network, that is, a strongly
connected digraph.

We aim to help people to orientate in it, and as we have seen, a
neat solution may consist in coloring the roads such that our
digraph becomes a synchronizing automaton. When is such a
coloring possible?
In other words: which strongly connected digraphs may appear as
underlying digraphs of synchronizing automata?

An obvious necessary condition:
all vertices should have the same out-degree.
In what follows we refer to this as to the constant out-degree
condition.

Mikhail Volkov Synchronizing Finite Automata

Road Coloring

Now suppose that we have a transport network, that is, a strongly
connected digraph.

We aim to help people to orientate in it, and as we have seen, a
neat solution may consist in coloring the roads such that our
digraph becomes a synchronizing automaton. When is such a
coloring possible?
In other words: which strongly connected digraphs may appear as
underlying digraphs of synchronizing automata?

An obvious necessary condition:
all vertices should have the same out-degree.
In what follows we refer to this as to the constant out-degree
condition.

Mikhail Volkov Synchronizing Finite Automata

Road Coloring

Now suppose that we have a transport network, that is, a strongly
connected digraph.

We aim to help people to orientate in it, and as we have seen, a
neat solution may consist in coloring the roads such that our
digraph becomes a synchronizing automaton. When is such a
coloring possible?
In other words: which strongly connected digraphs may appear as
underlying digraphs of synchronizing automata?

An obvious necessary condition:
all vertices should have the same out-degree.
In what follows we refer to this as to the constant out-degree
condition.

Mikhail Volkov Synchronizing Finite Automata

Road Coloring

Now suppose that we have a transport network, that is, a strongly
connected digraph.

We aim to help people to orientate in it, and as we have seen, a
neat solution may consist in coloring the roads such that our
digraph becomes a synchronizing automaton. When is such a
coloring possible?
In other words: which strongly connected digraphs may appear as
underlying digraphs of synchronizing automata?

An obvious necessary condition:
all vertices should have the same out-degree.
In what follows we refer to this as to the constant out-degree
condition.

Mikhail Volkov Synchronizing Finite Automata

Road Coloring

Now suppose that we have a transport network, that is, a strongly
connected digraph.

We aim to help people to orientate in it, and as we have seen, a
neat solution may consist in coloring the roads such that our
digraph becomes a synchronizing automaton. When is such a
coloring possible?
In other words: which strongly connected digraphs may appear as
underlying digraphs of synchronizing automata?

An obvious necessary condition:
all vertices should have the same out-degree.
In what follows we refer to this as to the constant out-degree
condition.

Mikhail Volkov Synchronizing Finite Automata

Necessity of Primitivity

A less obvious necessary condition is called aperiodicity or
primitivity:
the g.c.d. of lengths of all cycles should be equal to 1.

To see why primitivity is necessary, suppose that Γ = (V ,E) is a
strongly connected digraph and k > 1 is a common divisor of
lengths of its cycles. Take a vertex v0 ∈ V and, for
i = 0, 1, . . . , k − 1, let

Vi = {v ∈ V | ∃ path from v0 to v of length i (mod k)}.

Clearly, V =
k−1
⋃

i=0
Vi . We claim that Vi ∩ Vj = ∅ if i 6= j .

Mikhail Volkov Synchronizing Finite Automata

Necessity of Primitivity

A less obvious necessary condition is called aperiodicity or
primitivity:
the g.c.d. of lengths of all cycles should be equal to 1.

To see why primitivity is necessary, suppose that Γ = (V ,E) is a
strongly connected digraph and k > 1 is a common divisor of
lengths of its cycles. Take a vertex v0 ∈ V and, for
i = 0, 1, . . . , k − 1, let

Vi = {v ∈ V | ∃ path from v0 to v of length i (mod k)}.

Clearly, V =
k−1
⋃

i=0
Vi . We claim that Vi ∩ Vj = ∅ if i 6= j .

Mikhail Volkov Synchronizing Finite Automata

Necessity of Primitivity

A less obvious necessary condition is called aperiodicity or
primitivity:
the g.c.d. of lengths of all cycles should be equal to 1.

To see why primitivity is necessary, suppose that Γ = (V ,E) is a
strongly connected digraph and k > 1 is a common divisor of
lengths of its cycles. Take a vertex v0 ∈ V and, for
i = 0, 1, . . . , k − 1, let

Vi = {v ∈ V | ∃ path from v0 to v of length i (mod k)}.

Clearly, V =
k−1
⋃

i=0
Vi . We claim that Vi ∩ Vj = ∅ if i 6= j .

Mikhail Volkov Synchronizing Finite Automata

Necessity of Primitivity

A less obvious necessary condition is called aperiodicity or
primitivity:
the g.c.d. of lengths of all cycles should be equal to 1.

To see why primitivity is necessary, suppose that Γ = (V ,E) is a
strongly connected digraph and k > 1 is a common divisor of
lengths of its cycles. Take a vertex v0 ∈ V and, for
i = 0, 1, . . . , k − 1, let

Vi = {v ∈ V | ∃ path from v0 to v of length i (mod k)}.

Clearly, V =
k−1
⋃

i=0
Vi . We claim that Vi ∩ Vj = ∅ if i 6= j .

Mikhail Volkov Synchronizing Finite Automata

Necessity of Primitivity

A less obvious necessary condition is called aperiodicity or
primitivity:
the g.c.d. of lengths of all cycles should be equal to 1.

To see why primitivity is necessary, suppose that Γ = (V ,E) is a
strongly connected digraph and k > 1 is a common divisor of
lengths of its cycles. Take a vertex v0 ∈ V and, for
i = 0, 1, . . . , k − 1, let

Vi = {v ∈ V | ∃ path from v0 to v of length i (mod k)}.

Clearly, V =
k−1
⋃

i=0
Vi . We claim that Vi ∩ Vj = ∅ if i 6= j .

Mikhail Volkov Synchronizing Finite Automata

Necessity of Primitivity

Let v ∈ Vi ∩ Vj where i 6= j . This means that in Γ there are two
paths from v0 to v : of length ℓ ≡ i (mod k) and of length m ≡ j

(mod k).

There is also a path from v to v0 of length, say, n. Combining it
with the two paths above we get a cycle of length ℓ+ n and a
cycle of length m + n.

Mikhail Volkov Synchronizing Finite Automata

Necessity of Primitivity

Let v ∈ Vi ∩ Vj where i 6= j . This means that in Γ there are two
paths from v0 to v : of length ℓ ≡ i (mod k) and of length m ≡ j

(mod k).

v0 v

There is also a path from v to v0 of length, say, n. Combining it
with the two paths above we get a cycle of length ℓ+ n and a
cycle of length m + n.

Mikhail Volkov Synchronizing Finite Automata

Necessity of Primitivity

Let v ∈ Vi ∩ Vj where i 6= j . This means that in Γ there are two
paths from v0 to v : of length ℓ ≡ i (mod k) and of length m ≡ j

(mod k).

v0 v. . .

There is also a path from v to v0 of length, say, n. Combining it
with the two paths above we get a cycle of length ℓ+ n and a
cycle of length m + n.

Mikhail Volkov Synchronizing Finite Automata

Necessity of Primitivity

Since k divides the length of any cycle in Γ, we have
ℓ+ n ≡ i + n ≡ 0(mod k) and m+ n ≡ j + n ≡ 0(mod k), whence
i ≡ j (mod k), a contradiction.

Thus, V is a disjoint union of V0,V1, . . . ,Vk−1, and by the
definition each arrow in Γ leads from Vi to Vi+1(mod k).

Then Γ definitely cannot be converted into a synchronizing
automaton by any labelling of its arrows: for instance, no paths of
the same length ℓ originated in V0 and V1 can terminate in the
same vertex because they end in Vℓ(mod k) and in Vℓ+1(mod k)

respectively.

Mikhail Volkov Synchronizing Finite Automata

Necessity of Primitivity

Since k divides the length of any cycle in Γ, we have
ℓ+ n ≡ i + n ≡ 0(mod k) and m+ n ≡ j + n ≡ 0(mod k), whence
i ≡ j (mod k), a contradiction.

Thus, V is a disjoint union of V0,V1, . . . ,Vk−1, and by the
definition each arrow in Γ leads from Vi to Vi+1(mod k).

Then Γ definitely cannot be converted into a synchronizing
automaton by any labelling of its arrows: for instance, no paths of
the same length ℓ originated in V0 and V1 can terminate in the
same vertex because they end in Vℓ(mod k) and in Vℓ+1(mod k)

respectively.

Mikhail Volkov Synchronizing Finite Automata

Necessity of Primitivity

Since k divides the length of any cycle in Γ, we have
ℓ+ n ≡ i + n ≡ 0(mod k) and m+ n ≡ j + n ≡ 0(mod k), whence
i ≡ j (mod k), a contradiction.

Thus, V is a disjoint union of V0,V1, . . . ,Vk−1, and by the
definition each arrow in Γ leads from Vi to Vi+1(mod k).

Then Γ definitely cannot be converted into a synchronizing
automaton by any labelling of its arrows: for instance, no paths of
the same length ℓ originated in V0 and V1 can terminate in the
same vertex because they end in Vℓ(mod k) and in Vℓ+1(mod k)

respectively.

Mikhail Volkov Synchronizing Finite Automata

Road Coloring Conjecture

The Road Coloring Conjecture claims that the two necessary
conditions (constant out-degree and primitivity) are in fact
sufficient. In other words: every strongly connected primitive

digraph with constant out-degree admits a synchronizing coloring.

The Road Coloring Conjecture was explicitly stated by Adler,
Goodwyn and Weiss in 1977 (Equivalence of topological Markov
shifts, Israel J. Math., 27, 49–63). In an implicit form it was
present already in an earlier memoir by Adler and Weiss (Similarity
of automorphisms of the torus, Memoirs Amer. Math. Soc., 98
(1970)).

Mikhail Volkov Synchronizing Finite Automata

Road Coloring Conjecture

The Road Coloring Conjecture claims that the two necessary
conditions (constant out-degree and primitivity) are in fact
sufficient. In other words: every strongly connected primitive

digraph with constant out-degree admits a synchronizing coloring.

The Road Coloring Conjecture was explicitly stated by Adler,
Goodwyn and Weiss in 1977 (Equivalence of topological Markov
shifts, Israel J. Math., 27, 49–63). In an implicit form it was
present already in an earlier memoir by Adler and Weiss (Similarity
of automorphisms of the torus, Memoirs Amer. Math. Soc., 98
(1970)).

Mikhail Volkov Synchronizing Finite Automata

Road Coloring Conjecture

The Road Coloring Conjecture claims that the two necessary
conditions (constant out-degree and primitivity) are in fact
sufficient. In other words: every strongly connected primitive

digraph with constant out-degree admits a synchronizing coloring.

The Road Coloring Conjecture was explicitly stated by Adler,
Goodwyn and Weiss in 1977 (Equivalence of topological Markov
shifts, Israel J. Math., 27, 49–63). In an implicit form it was
present already in an earlier memoir by Adler and Weiss (Similarity
of automorphisms of the torus, Memoirs Amer. Math. Soc., 98
(1970)).

Mikhail Volkov Synchronizing Finite Automata

Road Coloring Conjecture

The Road Coloring Conjecture claims that the two necessary
conditions (constant out-degree and primitivity) are in fact
sufficient. In other words: every strongly connected primitive

digraph with constant out-degree admits a synchronizing coloring.

The Road Coloring Conjecture was explicitly stated by Adler,
Goodwyn and Weiss in 1977 (Equivalence of topological Markov
shifts, Israel J. Math., 27, 49–63). In an implicit form it was
present already in an earlier memoir by Adler and Weiss (Similarity
of automorphisms of the torus, Memoirs Amer. Math. Soc., 98
(1970)).

Mikhail Volkov Synchronizing Finite Automata

Road Coloring Conjecture

The original motivation for the Road Coloring Conjecture comes
from symbolic dynamics, see Marie-Pierre Béal and Dominique
Perrin’s chapter “Symbolic Dynamics and Finite Automata” in
Handbook of Formal Languages, Vol.I. Springer, 1997.

Mikhail Volkov Synchronizing Finite Automata

Road Coloring Conjecture

The original motivation for the Road Coloring Conjecture comes
from symbolic dynamics, see Marie-Pierre Béal and Dominique
Perrin’s chapter “Symbolic Dynamics and Finite Automata” in
Handbook of Formal Languages, Vol.I. Springer, 1997.

r
r

r

r

r

r

r

r

r

r

r
✲

a b c d e

A symbolic trajectory . . . abcdcbabcdd . . .

Mikhail Volkov Synchronizing Finite Automata

Road Coloring Conjecture

An archetypical object of symbolic dynamics is the collection of all
labels of the bi-infinite walks on a finite automaton (a sofic
subshift).
However the conjecture is natural also from the viewpoint of the
“reverse engineering” of synchronizing automata as presented here.

The Road Coloring Conjecture has attracted much attention.
There were several interesting partial results, and finally the
problem was solved (in the affirmative) in August 2007 by
Avraham Trahtman. The solution is published in: The Road
Coloring Problem, Israel J. Math. 172 (2009) 51–60. Trahtman’s
solution got much publicity.

Mikhail Volkov Synchronizing Finite Automata

Road Coloring Conjecture

An archetypical object of symbolic dynamics is the collection of all
labels of the bi-infinite walks on a finite automaton (a sofic
subshift).
However the conjecture is natural also from the viewpoint of the
“reverse engineering” of synchronizing automata as presented here.

The Road Coloring Conjecture has attracted much attention.
There were several interesting partial results, and finally the
problem was solved (in the affirmative) in August 2007 by
Avraham Trahtman. The solution is published in: The Road
Coloring Problem, Israel J. Math. 172 (2009) 51–60. Trahtman’s
solution got much publicity.

Mikhail Volkov Synchronizing Finite Automata

Road Coloring Conjecture

An archetypical object of symbolic dynamics is the collection of all
labels of the bi-infinite walks on a finite automaton (a sofic
subshift).
However the conjecture is natural also from the viewpoint of the
“reverse engineering” of synchronizing automata as presented here.

The Road Coloring Conjecture has attracted much attention.
There were several interesting partial results, and finally the
problem was solved (in the affirmative) in August 2007 by
Avraham Trahtman. The solution is published in: The Road
Coloring Problem, Israel J. Math. 172 (2009) 51–60. Trahtman’s
solution got much publicity.

Mikhail Volkov Synchronizing Finite Automata

Road Coloring Conjecture

An archetypical object of symbolic dynamics is the collection of all
labels of the bi-infinite walks on a finite automaton (a sofic
subshift).
However the conjecture is natural also from the viewpoint of the
“reverse engineering” of synchronizing automata as presented here.

The Road Coloring Conjecture has attracted much attention.
There were several interesting partial results, and finally the
problem was solved (in the affirmative) in August 2007 by
Avraham Trahtman. The solution is published in: The Road
Coloring Problem, Israel J. Math. 172 (2009) 51–60. Trahtman’s
solution got much publicity.

Mikhail Volkov Synchronizing Finite Automata

Stability

Trahtman’s proof heavily depends on a neat idea of stability which
is due to Karel Culik II, Juhani Karhumäki and Jarkko Kari (A note
on synchronized automata and Road Coloring Problem, Int. J.
Found. Comput. Sci., 13 (2002) 459–471). Let A = 〈Q,Σ, δ〉 be a
DFA. We define the relation ∼ on Q as follows:

q ∼ q′ ⇐⇒ ∀u ∈ Σ∗ ∃v ∈ Σ∗ q . uv = q′.uv .

∼ is called the stability relation and any pair (q, q′) such that
q ∼ q′ is called stable. It is immediate that ∼ is a congruence of
the automaton A . Also observe that A is synchronizing iff all
pairs are stable.

Mikhail Volkov Synchronizing Finite Automata

Stability

Trahtman’s proof heavily depends on a neat idea of stability which
is due to Karel Culik II, Juhani Karhumäki and Jarkko Kari (A note
on synchronized automata and Road Coloring Problem, Int. J.
Found. Comput. Sci., 13 (2002) 459–471). Let A = 〈Q,Σ, δ〉 be a
DFA. We define the relation ∼ on Q as follows:

q ∼ q′ ⇐⇒ ∀u ∈ Σ∗ ∃v ∈ Σ∗ q . uv = q′.uv .

∼ is called the stability relation and any pair (q, q′) such that
q ∼ q′ is called stable. It is immediate that ∼ is a congruence of
the automaton A . Also observe that A is synchronizing iff all
pairs are stable.

Mikhail Volkov Synchronizing Finite Automata

Stability

Trahtman’s proof heavily depends on a neat idea of stability which
is due to Karel Culik II, Juhani Karhumäki and Jarkko Kari (A note
on synchronized automata and Road Coloring Problem, Int. J.
Found. Comput. Sci., 13 (2002) 459–471). Let A = 〈Q,Σ, δ〉 be a
DFA. We define the relation ∼ on Q as follows:

q ∼ q′ ⇐⇒ ∀u ∈ Σ∗ ∃v ∈ Σ∗ q . uv = q′.uv .

∼ is called the stability relation and any pair (q, q′) such that
q ∼ q′ is called stable. It is immediate that ∼ is a congruence of
the automaton A . Also observe that A is synchronizing iff all
pairs are stable.

Mikhail Volkov Synchronizing Finite Automata

Stability

Trahtman’s proof heavily depends on a neat idea of stability which
is due to Karel Culik II, Juhani Karhumäki and Jarkko Kari (A note
on synchronized automata and Road Coloring Problem, Int. J.
Found. Comput. Sci., 13 (2002) 459–471). Let A = 〈Q,Σ, δ〉 be a
DFA. We define the relation ∼ on Q as follows:

q ∼ q′ ⇐⇒ ∀u ∈ Σ∗ ∃v ∈ Σ∗ q . uv = q′.uv .

∼ is called the stability relation and any pair (q, q′) such that
q ∼ q′ is called stable. It is immediate that ∼ is a congruence of
the automaton A . Also observe that A is synchronizing iff all
pairs are stable.

Mikhail Volkov Synchronizing Finite Automata

Stability

Trahtman’s proof heavily depends on a neat idea of stability which
is due to Karel Culik II, Juhani Karhumäki and Jarkko Kari (A note
on synchronized automata and Road Coloring Problem, Int. J.
Found. Comput. Sci., 13 (2002) 459–471). Let A = 〈Q,Σ, δ〉 be a
DFA. We define the relation ∼ on Q as follows:

q ∼ q′ ⇐⇒ ∀u ∈ Σ∗ ∃v ∈ Σ∗ q . uv = q′.uv .

∼ is called the stability relation and any pair (q, q′) such that
q ∼ q′ is called stable. It is immediate that ∼ is a congruence of
the automaton A . Also observe that A is synchronizing iff all
pairs are stable.

Mikhail Volkov Synchronizing Finite Automata

Stability

We say that a coloring of a digraph with constant out-degree is
stable if the resulting automaton contains at least one stable pair
(q, q′) with q 6= q′. The crucial observation by Culik, Karhumäki
and Kari is

Proposition CKK. Suppose every strongly connected primitive

digraph with constant out-degree and more than 1 vertex has a

stable coloring. Then the Road Coloring Conjecture holds true.

The proof is rather straightforward: one inducts on the number of
vertices in the digraph. If Γ admits a stable coloring and A is the
resulting automaton, then the quotient automaton A /∼ admits a
synchronizing recoloring by the induction assumption.
Then it remains to lift the correct coloring of A / ∼ to a
synchronizing coloring of Γ.

Mikhail Volkov Synchronizing Finite Automata

Stability

We say that a coloring of a digraph with constant out-degree is
stable if the resulting automaton contains at least one stable pair
(q, q′) with q 6= q′. The crucial observation by Culik, Karhumäki
and Kari is

Proposition CKK. Suppose every strongly connected primitive

digraph with constant out-degree and more than 1 vertex has a

stable coloring. Then the Road Coloring Conjecture holds true.

The proof is rather straightforward: one inducts on the number of
vertices in the digraph. If Γ admits a stable coloring and A is the
resulting automaton, then the quotient automaton A /∼ admits a
synchronizing recoloring by the induction assumption.
Then it remains to lift the correct coloring of A / ∼ to a
synchronizing coloring of Γ.

Mikhail Volkov Synchronizing Finite Automata

Stability

We say that a coloring of a digraph with constant out-degree is
stable if the resulting automaton contains at least one stable pair
(q, q′) with q 6= q′. The crucial observation by Culik, Karhumäki
and Kari is

Proposition CKK. Suppose every strongly connected primitive

digraph with constant out-degree and more than 1 vertex has a

stable coloring. Then the Road Coloring Conjecture holds true.

The proof is rather straightforward: one inducts on the number of
vertices in the digraph. If Γ admits a stable coloring and A is the
resulting automaton, then the quotient automaton A /∼ admits a
synchronizing recoloring by the induction assumption.
Then it remains to lift the correct coloring of A / ∼ to a
synchronizing coloring of Γ.

Mikhail Volkov Synchronizing Finite Automata

Stability

We say that a coloring of a digraph with constant out-degree is
stable if the resulting automaton contains at least one stable pair
(q, q′) with q 6= q′. The crucial observation by Culik, Karhumäki
and Kari is

Proposition CKK. Suppose every strongly connected primitive

digraph with constant out-degree and more than 1 vertex has a

stable coloring. Then the Road Coloring Conjecture holds true.

The proof is rather straightforward: one inducts on the number of
vertices in the digraph. If Γ admits a stable coloring and A is the
resulting automaton, then the quotient automaton A /∼ admits a
synchronizing recoloring by the induction assumption.
Then it remains to lift the correct coloring of A / ∼ to a
synchronizing coloring of Γ.

Mikhail Volkov Synchronizing Finite Automata

Example

Look at the following digraph Γ and one of its colorings. It is not
synchronizing (the states 1 and 4 cannot be synchronized).

1

2

3

4

5

6

One can see that the stability relation is the partition 123 | 456.

Mikhail Volkov Synchronizing Finite Automata

Example

Look at the following digraph Γ and one of its colorings. It is not
synchronizing (the states 1 and 4 cannot be synchronized).

1

2

3

4

5

6

One can see that the stability relation is the partition 123 | 456.

Mikhail Volkov Synchronizing Finite Automata

Example

Look at the following digraph Γ and one of its colorings. It is not
synchronizing (the states 1 and 4 cannot be synchronized).

1

2

3

4

5

6

One can see that the stability relation is the partition 123 | 456.

Mikhail Volkov Synchronizing Finite Automata

Example

Look at the following digraph Γ and one of its colorings. It is not
synchronizing (the states 1 and 4 cannot be synchronized).

1

2

3

4

5

6

One can see that the stability relation is the partition 123 | 456.

Mikhail Volkov Synchronizing Finite Automata

Example

This is the quotient automaton of the above coloring. It is easy to
recolor this quotient to get a synchronizing automaton.

123 456

Red is a reset word for the new coloring.

Mikhail Volkov Synchronizing Finite Automata

Example

This is the quotient automaton of the above coloring. It is easy to
recolor this quotient to get a synchronizing automaton.

123 456 123 456

Red is a reset word for the new coloring.

Mikhail Volkov Synchronizing Finite Automata

Example

This is the quotient automaton of the above coloring. It is easy to
recolor this quotient to get a synchronizing automaton.

123 456 123 456

Red is a reset word for the new coloring.

Mikhail Volkov Synchronizing Finite Automata

Example

Now it easy to lift the synchronizing coloring of the quotient to
a synchronizing coloring of the initial digraph.

Red-Blue a reset word for the new coloring.

Mikhail Volkov Synchronizing Finite Automata

Example

Now it easy to lift the synchronizing coloring of the quotient to
a synchronizing coloring of the initial digraph.

1

2

3

4

5

6

Red-Blue a reset word for the new coloring.

Mikhail Volkov Synchronizing Finite Automata

Example

Now it easy to lift the synchronizing coloring of the quotient to
a synchronizing coloring of the initial digraph.

1

2

3

4

5

6

Red-Blue a reset word for the new coloring.

Mikhail Volkov Synchronizing Finite Automata

Trahtman’s Proof

Trahtman has managed to prove exactly what was needed to use
Proposition CKK: every strongly connected primitive digraph with
constant out-degree and more than 1 vertex has a stable coloring.
Thus, Road Coloring Conjecture holds true.

The proof is clever but not too difficult.
For brevity, we call strongly connected primitive digraphs with
constant out-degree and more than 1 vertex admissible.

Mikhail Volkov Synchronizing Finite Automata

Trahtman’s Proof

Trahtman has managed to prove exactly what was needed to use
Proposition CKK: every strongly connected primitive digraph with
constant out-degree and more than 1 vertex has a stable coloring.
Thus, Road Coloring Conjecture holds true.

The proof is clever but not too difficult.
For brevity, we call strongly connected primitive digraphs with
constant out-degree and more than 1 vertex admissible.

Mikhail Volkov Synchronizing Finite Automata

Trahtman’s Proof

Trahtman has managed to prove exactly what was needed to use
Proposition CKK: every strongly connected primitive digraph with
constant out-degree and more than 1 vertex has a stable coloring.
Thus, Road Coloring Conjecture holds true.

The proof is clever but not too difficult.
For brevity, we call strongly connected primitive digraphs with
constant out-degree and more than 1 vertex admissible.

Mikhail Volkov Synchronizing Finite Automata

Deadlocks and Cliques

First, we need a couple of notions.

Let A = 〈Q,Σ, δ〉 be a DFA. A pair (p, q) of distinct states is a
deadlock if ∀w ∈ Σ∗ p .w 6= q .w . If an automaton is not
synchronizing, it must have deadlocks!
Moreover, if a pair (p, q) is not stable, then for some word u ∈ Σ∗

the pair (p . u, q . u) is a deadlock.

A clique F is any subset of Q of maximum cardinality such that
every pair of states in F is a deadlock.
Clearly, if F is a clique, so is F . u for every u ∈ Σ∗.

Mikhail Volkov Synchronizing Finite Automata

Deadlocks and Cliques

First, we need a couple of notions.

Let A = 〈Q,Σ, δ〉 be a DFA. A pair (p, q) of distinct states is a
deadlock if ∀w ∈ Σ∗ p .w 6= q .w . If an automaton is not
synchronizing, it must have deadlocks!
Moreover, if a pair (p, q) is not stable, then for some word u ∈ Σ∗

the pair (p . u, q . u) is a deadlock.

A clique F is any subset of Q of maximum cardinality such that
every pair of states in F is a deadlock.
Clearly, if F is a clique, so is F . u for every u ∈ Σ∗.

Mikhail Volkov Synchronizing Finite Automata

Deadlocks and Cliques

First, we need a couple of notions.

Let A = 〈Q,Σ, δ〉 be a DFA. A pair (p, q) of distinct states is a
deadlock if ∀w ∈ Σ∗ p .w 6= q .w . If an automaton is not
synchronizing, it must have deadlocks!
Moreover, if a pair (p, q) is not stable, then for some word u ∈ Σ∗

the pair (p . u, q . u) is a deadlock.

A clique F is any subset of Q of maximum cardinality such that
every pair of states in F is a deadlock.
Clearly, if F is a clique, so is F . u for every u ∈ Σ∗.

Mikhail Volkov Synchronizing Finite Automata

Deadlocks and Cliques

First, we need a couple of notions.

Let A = 〈Q,Σ, δ〉 be a DFA. A pair (p, q) of distinct states is a
deadlock if ∀w ∈ Σ∗ p .w 6= q .w . If an automaton is not
synchronizing, it must have deadlocks!
Moreover, if a pair (p, q) is not stable, then for some word u ∈ Σ∗

the pair (p . u, q . u) is a deadlock.

A clique F is any subset of Q of maximum cardinality such that
every pair of states in F is a deadlock.
Clearly, if F is a clique, so is F . u for every u ∈ Σ∗.

Mikhail Volkov Synchronizing Finite Automata

Deadlocks and Cliques

First, we need a couple of notions.

Let A = 〈Q,Σ, δ〉 be a DFA. A pair (p, q) of distinct states is a
deadlock if ∀w ∈ Σ∗ p .w 6= q .w . If an automaton is not
synchronizing, it must have deadlocks!
Moreover, if a pair (p, q) is not stable, then for some word u ∈ Σ∗

the pair (p . u, q . u) is a deadlock.

A clique F is any subset of Q of maximum cardinality such that
every pair of states in F is a deadlock.
Clearly, if F is a clique, so is F . u for every u ∈ Σ∗.

Mikhail Volkov Synchronizing Finite Automata

Deadlocks and Cliques

First, we need a couple of notions.

Let A = 〈Q,Σ, δ〉 be a DFA. A pair (p, q) of distinct states is a
deadlock if ∀w ∈ Σ∗ p .w 6= q .w . If an automaton is not
synchronizing, it must have deadlocks!
Moreover, if a pair (p, q) is not stable, then for some word u ∈ Σ∗

the pair (p . u, q . u) is a deadlock.

A clique F is any subset of Q of maximum cardinality such that
every pair of states in F is a deadlock.
Clearly, if F is a clique, so is F . u for every u ∈ Σ∗.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Cliques

Lemma 1. Let A = 〈Q,Σ, δ〉 be an automaton. If F ,G ⊆ Q are

two cliques in A such that

|F | − |F ∩ G | = |G | − |F ∩ G | = 1,

then A has a stable pair.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Cliques

Lemma 1. Let A = 〈Q,Σ, δ〉 be an automaton. If F ,G ⊆ Q are

two cliques in A such that

|F | − |F ∩ G | = |G | − |F ∩ G | = 1,

then A has a stable pair.

F G

p q

Mikhail Volkov Synchronizing Finite Automata

Lemma on Cliques

Proof. Suppose that |F | − |F ∩ G | = |G | − |F ∩ G | = 1 and let p
be the only element in F \ G and q the only element in G \ F . If
the pair (p, q) is not stable, then for some word u ∈ Σ∗, the pair
(p . u, q . u) is a deadlock. Then all pairs in (F ∪ G) . u are
deadlocks and |(F ∪ G) . u| = |F |+ 1, a contradiction.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Cliques

Proof. Suppose that |F | − |F ∩ G | = |G | − |F ∩ G | = 1 and let p
be the only element in F \ G and q the only element in G \ F . If
the pair (p, q) is not stable, then for some word u ∈ Σ∗, the pair
(p . u, q . u) is a deadlock. Then all pairs in (F ∪ G) . u are
deadlocks and |(F ∪ G) . u| = |F |+ 1, a contradiction.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Cliques

Proof. Suppose that |F | − |F ∩ G | = |G | − |F ∩ G | = 1 and let p
be the only element in F \ G and q the only element in G \ F . If
the pair (p, q) is not stable, then for some word u ∈ Σ∗, the pair
(p . u, q . u) is a deadlock. Then all pairs in (F ∪ G) . u are
deadlocks and |(F ∪ G) . u| = |F |+ 1, a contradiction.

Mikhail Volkov Synchronizing Finite Automata

Levels w.r.t. a Letter

Let A = 〈Q,Σ, δ〉 be a DFA, a ∈ Σ. We want to assign to its
states a parameter called the level w.r.t. a.

A typical connected component for a
and the levels of its states.

Mikhail Volkov Synchronizing Finite Automata

Levels w.r.t. a Letter

Let A = 〈Q,Σ, δ〉 be a DFA, a ∈ Σ. We want to assign to its
states a parameter called the level w.r.t. a.

a

a

a

a

a
a a

a

a

a

a
A typical connected component for a
and the levels of its states.

Mikhail Volkov Synchronizing Finite Automata

Levels w.r.t. a Letter

Let A = 〈Q,Σ, δ〉 be a DFA, a ∈ Σ. We want to assign to its
states a parameter called the level w.r.t. a.

1 3

0

0 0

0

1 2

2 3

3

a

a

a

a

a
a a

a

a

a

a
A typical connected component for a
and the levels of its states.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

Lemma 2. Let A = 〈Q,Σ, δ〉 be a strongly connected automaton

such that all states of maximal level L > 0 w.r.t. a ∈ Σ belong to

the same tree. Then A has a stable pair.

Proof. Let M be the set of all states of level L w.r.t a. Then
p . aL = q . aL for all p, q ∈ M whence no pair of states from M

forms a deadlock. Thus, if C ⊆ Q is a clique then |C ∩M| ≤ 1.
Take a clique C such that |C ∩M| = 1 (it exists since A is
strongly connected). Then F = C .aL−1 is a clique that has all its
states except one in the a-cycles. If m is the l.c.m. of the lengths
of all a-cycles, r . am = r for any r in any a-cycle. Hence
G = F . am is a clique such that

|F | − |F ∩ G | = |G | − |F ∩ G | = 1.

By Lemma 1 A has a stable pair.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

Lemma 2. Let A = 〈Q,Σ, δ〉 be a strongly connected automaton

such that all states of maximal level L > 0 w.r.t. a ∈ Σ belong to

the same tree. Then A has a stable pair.

Proof. Let M be the set of all states of level L w.r.t a. Then
p . aL = q . aL for all p, q ∈ M whence no pair of states from M

forms a deadlock. Thus, if C ⊆ Q is a clique then |C ∩M| ≤ 1.
Take a clique C such that |C ∩M| = 1 (it exists since A is
strongly connected). Then F = C .aL−1 is a clique that has all its
states except one in the a-cycles. If m is the l.c.m. of the lengths
of all a-cycles, r . am = r for any r in any a-cycle. Hence
G = F . am is a clique such that

|F | − |F ∩ G | = |G | − |F ∩ G | = 1.

By Lemma 1 A has a stable pair.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

Lemma 2. Let A = 〈Q,Σ, δ〉 be a strongly connected automaton

such that all states of maximal level L > 0 w.r.t. a ∈ Σ belong to

the same tree. Then A has a stable pair.

Proof. Let M be the set of all states of level L w.r.t a. Then
p . aL = q . aL for all p, q ∈ M whence no pair of states from M

forms a deadlock. Thus, if C ⊆ Q is a clique then |C ∩M| ≤ 1.
Take a clique C such that |C ∩M| = 1 (it exists since A is
strongly connected). Then F = C .aL−1 is a clique that has all its
states except one in the a-cycles. If m is the l.c.m. of the lengths
of all a-cycles, r . am = r for any r in any a-cycle. Hence
G = F . am is a clique such that

|F | − |F ∩ G | = |G | − |F ∩ G | = 1.

By Lemma 1 A has a stable pair.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

Lemma 2. Let A = 〈Q,Σ, δ〉 be a strongly connected automaton

such that all states of maximal level L > 0 w.r.t. a ∈ Σ belong to

the same tree. Then A has a stable pair.

Proof. Let M be the set of all states of level L w.r.t a. Then
p . aL = q . aL for all p, q ∈ M whence no pair of states from M

forms a deadlock. Thus, if C ⊆ Q is a clique then |C ∩M| ≤ 1.
Take a clique C such that |C ∩M| = 1 (it exists since A is
strongly connected). Then F = C .aL−1 is a clique that has all its
states except one in the a-cycles. If m is the l.c.m. of the lengths
of all a-cycles, r . am = r for any r in any a-cycle. Hence
G = F . am is a clique such that

|F | − |F ∩ G | = |G | − |F ∩ G | = 1.

By Lemma 1 A has a stable pair.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

Lemma 2. Let A = 〈Q,Σ, δ〉 be a strongly connected automaton

such that all states of maximal level L > 0 w.r.t. a ∈ Σ belong to

the same tree. Then A has a stable pair.

Proof. Let M be the set of all states of level L w.r.t a. Then
p . aL = q . aL for all p, q ∈ M whence no pair of states from M

forms a deadlock. Thus, if C ⊆ Q is a clique then |C ∩M| ≤ 1.
Take a clique C such that |C ∩M| = 1 (it exists since A is
strongly connected). Then F = C .aL−1 is a clique that has all its
states except one in the a-cycles. If m is the l.c.m. of the lengths
of all a-cycles, r . am = r for any r in any a-cycle. Hence
G = F . am is a clique such that

|F | − |F ∩ G | = |G | − |F ∩ G | = 1.

By Lemma 1 A has a stable pair.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

Lemma 2. Let A = 〈Q,Σ, δ〉 be a strongly connected automaton

such that all states of maximal level L > 0 w.r.t. a ∈ Σ belong to

the same tree. Then A has a stable pair.

Proof. Let M be the set of all states of level L w.r.t a. Then
p . aL = q . aL for all p, q ∈ M whence no pair of states from M

forms a deadlock. Thus, if C ⊆ Q is a clique then |C ∩M| ≤ 1.
Take a clique C such that |C ∩M| = 1 (it exists since A is
strongly connected). Then F = C .aL−1 is a clique that has all its
states except one in the a-cycles. If m is the l.c.m. of the lengths
of all a-cycles, r . am = r for any r in any a-cycle. Hence
G = F . am is a clique such that

|F | − |F ∩ G | = |G | − |F ∩ G | = 1.

By Lemma 1 A has a stable pair.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

Lemma 2. Let A = 〈Q,Σ, δ〉 be a strongly connected automaton

such that all states of maximal level L > 0 w.r.t. a ∈ Σ belong to

the same tree. Then A has a stable pair.

Proof. Let M be the set of all states of level L w.r.t a. Then
p . aL = q . aL for all p, q ∈ M whence no pair of states from M

forms a deadlock. Thus, if C ⊆ Q is a clique then |C ∩M| ≤ 1.
Take a clique C such that |C ∩M| = 1 (it exists since A is
strongly connected). Then F = C .aL−1 is a clique that has all its
states except one in the a-cycles. If m is the l.c.m. of the lengths
of all a-cycles, r . am = r for any r in any a-cycle. Hence
G = F . am is a clique such that

|F | − |F ∩ G | = |G | − |F ∩ G | = 1.

By Lemma 1 A has a stable pair.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

Lemma 2. Let A = 〈Q,Σ, δ〉 be a strongly connected automaton

such that all states of maximal level L > 0 w.r.t. a ∈ Σ belong to

the same tree. Then A has a stable pair.

Proof. Let M be the set of all states of level L w.r.t a. Then
p . aL = q . aL for all p, q ∈ M whence no pair of states from M

forms a deadlock. Thus, if C ⊆ Q is a clique then |C ∩M| ≤ 1.
Take a clique C such that |C ∩M| = 1 (it exists since A is
strongly connected). Then F = C .aL−1 is a clique that has all its
states except one in the a-cycles. If m is the l.c.m. of the lengths
of all a-cycles, r . am = r for any r in any a-cycle. Hence
G = F . am is a clique such that

|F | − |F ∩ G | = |G | − |F ∩ G | = 1.

By Lemma 1 A has a stable pair.

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

a

a

a

a

a
a a

a

a

a

a

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

a

a

a

a

a
a a

a

a

a

a
M

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

a

a

a

a

a
a a

a

a

a

a
M

C

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

a

a

a

a

a
a a

a

a

a

a

C

F = C . aL−1

Mikhail Volkov Synchronizing Finite Automata

Lemma on Level

a

a

a

a

a
a a

a

a

a

a

F = C . aL−1G = F . am

Mikhail Volkov Synchronizing Finite Automata

Reduction

Recall, that we try to prove that every admissible digraph Γ has a
stable coloring. By Lemma 2 for this it suffices to show that every
such Γ may be colored into an automaton satisfying the premise of
the lemma. This is, of course, much easier task because basically
we only need to deal with one color, that is, with the action of one
letter.

Take an arbitrary admissible digraph Γ. We start with an arbitrary
coloring of Γ, take an arbitrary color (=letter) a, and induct on the
number N of states that do not lie on any a-cycle in the initial
coloring.

Mikhail Volkov Synchronizing Finite Automata

Reduction

Recall, that we try to prove that every admissible digraph Γ has a
stable coloring. By Lemma 2 for this it suffices to show that every
such Γ may be colored into an automaton satisfying the premise of
the lemma. This is, of course, much easier task because basically
we only need to deal with one color, that is, with the action of one
letter.

Take an arbitrary admissible digraph Γ. We start with an arbitrary
coloring of Γ, take an arbitrary color (=letter) a, and induct on the
number N of states that do not lie on any a-cycle in the initial
coloring.

Mikhail Volkov Synchronizing Finite Automata

Reduction

Recall, that we try to prove that every admissible digraph Γ has a
stable coloring. By Lemma 2 for this it suffices to show that every
such Γ may be colored into an automaton satisfying the premise of
the lemma. This is, of course, much easier task because basically
we only need to deal with one color, that is, with the action of one
letter.

Take an arbitrary admissible digraph Γ. We start with an arbitrary
coloring of Γ, take an arbitrary color (=letter) a, and induct on the
number N of states that do not lie on any a-cycle in the initial
coloring.

Mikhail Volkov Synchronizing Finite Automata

Reduction

Recall, that we try to prove that every admissible digraph Γ has a
stable coloring. By Lemma 2 for this it suffices to show that every
such Γ may be colored into an automaton satisfying the premise of
the lemma. This is, of course, much easier task because basically
we only need to deal with one color, that is, with the action of one
letter.

Take an arbitrary admissible digraph Γ. We start with an arbitrary
coloring of Γ, take an arbitrary color (=letter) a, and induct on the
number N of states that do not lie on any a-cycle in the initial
coloring.

Mikhail Volkov Synchronizing Finite Automata

Induction Basis

Suppose that N = 0. This means that all states lie on a-cycles.
We say that a vertex p of Γ is a bunch if all edges that begin at p
lead to the same vertex q.

If all vertices in Γ are bunches, then there is just one a-cycle (since
Γ is strongly connected) and all cycles in Γ have the same length.
This contradicts the assumption that Γ is primitive.
It is quite interesting that this is the only place in the whole proof
where the primitivity condition is invoked.

Mikhail Volkov Synchronizing Finite Automata

Induction Basis

Suppose that N = 0. This means that all states lie on a-cycles.
We say that a vertex p of Γ is a bunch if all edges that begin at p
lead to the same vertex q.

p q

If all vertices in Γ are bunches, then there is just one a-cycle (since
Γ is strongly connected) and all cycles in Γ have the same length.
This contradicts the assumption that Γ is primitive.
It is quite interesting that this is the only place in the whole proof
where the primitivity condition is invoked.

Mikhail Volkov Synchronizing Finite Automata

Induction Basis

Suppose that N = 0. This means that all states lie on a-cycles.
We say that a vertex p of Γ is a bunch if all edges that begin at p
lead to the same vertex q.

p q

If all vertices in Γ are bunches, then there is just one a-cycle (since
Γ is strongly connected) and all cycles in Γ have the same length.
This contradicts the assumption that Γ is primitive.
It is quite interesting that this is the only place in the whole proof
where the primitivity condition is invoked.

Mikhail Volkov Synchronizing Finite Automata

Induction Basis

Suppose that N = 0. This means that all states lie on a-cycles.
We say that a vertex p of Γ is a bunch if all edges that begin at p
lead to the same vertex q.

p q

If all vertices in Γ are bunches, then there is just one a-cycle (since
Γ is strongly connected) and all cycles in Γ have the same length.
This contradicts the assumption that Γ is primitive.
It is quite interesting that this is the only place in the whole proof
where the primitivity condition is invoked.

Mikhail Volkov Synchronizing Finite Automata

Induction Basis

Thus, let p be a state which is not a bunch, let q = p . a and let
b 6= a be such that r = p . b 6= q. We exchange the labels of the

edges p
a
→ q and p

b
→ r .

p

q

ra

a

a

ak

a

b

It is clear that in the new coloring there is only one state of
maximal level w.r.t. a, namely q. Thus, the induction basis is
verified.

Mikhail Volkov Synchronizing Finite Automata

Induction Basis

Thus, let p be a state which is not a bunch, let q = p . a and let
b 6= a be such that r = p . b 6= q. We exchange the labels of the

edges p
a
→ q and p

b
→ r .

p

q

ra

a

a

ak

b

a

It is clear that in the new coloring there is only one state of
maximal level w.r.t. a, namely q. Thus, the induction basis is
verified.

Mikhail Volkov Synchronizing Finite Automata

Induction Basis

Thus, let p be a state which is not a bunch, let q = p . a and let
b 6= a be such that r = p . b 6= q. We exchange the labels of the

edges p
a
→ q and p

b
→ r .

p

q

ra

a

a

ak

b

a

It is clear that in the new coloring there is only one state of
maximal level w.r.t. a, namely q. Thus, the induction basis is
verified.

Mikhail Volkov Synchronizing Finite Automata

Induction Step

Now let N > 0. We denote by L the maximum level of the states
w.r.t. a in the initial coloring. Observe that N > 0 implies L > 0.
Let p be a state of level L. Since Γ is strongly connected, there is
an edge p′ → p with p′ 6= p, and by the choice of p, the label of
this edge is b 6= a. Let t = p′ . a. One has t 6= p. Let r = p . aL

and let C be the a-cycle on which r lies.

The following considerations split in several cases. In each case
except one we can recolor Γ by swapping the labels of two edges
such the new coloring either satisfies the premise of Lemma 2 (all
states of maximal level w.r.t. a belong to the same tree) or has
more states on the a-cycles (and the induction assumption
applies). The remaining case turns out to be easy.

Mikhail Volkov Synchronizing Finite Automata

Induction Step

Now let N > 0. We denote by L the maximum level of the states
w.r.t. a in the initial coloring. Observe that N > 0 implies L > 0.
Let p be a state of level L. Since Γ is strongly connected, there is
an edge p′ → p with p′ 6= p, and by the choice of p, the label of
this edge is b 6= a. Let t = p′ . a. One has t 6= p. Let r = p . aL

and let C be the a-cycle on which r lies.

The following considerations split in several cases. In each case
except one we can recolor Γ by swapping the labels of two edges
such the new coloring either satisfies the premise of Lemma 2 (all
states of maximal level w.r.t. a belong to the same tree) or has
more states on the a-cycles (and the induction assumption
applies). The remaining case turns out to be easy.

Mikhail Volkov Synchronizing Finite Automata

Induction Step

Now let N > 0. We denote by L the maximum level of the states
w.r.t. a in the initial coloring. Observe that N > 0 implies L > 0.
Let p be a state of level L. Since Γ is strongly connected, there is
an edge p′ → p with p′ 6= p, and by the choice of p, the label of
this edge is b 6= a. Let t = p′ . a. One has t 6= p. Let r = p . aL

and let C be the a-cycle on which r lies.

The following considerations split in several cases. In each case
except one we can recolor Γ by swapping the labels of two edges
such the new coloring either satisfies the premise of Lemma 2 (all
states of maximal level w.r.t. a belong to the same tree) or has
more states on the a-cycles (and the induction assumption
applies). The remaining case turns out to be easy.

Mikhail Volkov Synchronizing Finite Automata

Induction Step

Now let N > 0. We denote by L the maximum level of the states
w.r.t. a in the initial coloring. Observe that N > 0 implies L > 0.
Let p be a state of level L. Since Γ is strongly connected, there is
an edge p′ → p with p′ 6= p, and by the choice of p, the label of
this edge is b 6= a. Let t = p′ . a. One has t 6= p. Let r = p . aL

and let C be the a-cycle on which r lies.

The following considerations split in several cases. In each case
except one we can recolor Γ by swapping the labels of two edges
such the new coloring either satisfies the premise of Lemma 2 (all
states of maximal level w.r.t. a belong to the same tree) or has
more states on the a-cycles (and the induction assumption
applies). The remaining case turns out to be easy.

Mikhail Volkov Synchronizing Finite Automata

Induction Step

Now let N > 0. We denote by L the maximum level of the states
w.r.t. a in the initial coloring. Observe that N > 0 implies L > 0.
Let p be a state of level L. Since Γ is strongly connected, there is
an edge p′ → p with p′ 6= p, and by the choice of p, the label of
this edge is b 6= a. Let t = p′ . a. One has t 6= p. Let r = p . aL

and let C be the a-cycle on which r lies.

The following considerations split in several cases. In each case
except one we can recolor Γ by swapping the labels of two edges
such the new coloring either satisfies the premise of Lemma 2 (all
states of maximal level w.r.t. a belong to the same tree) or has
more states on the a-cycles (and the induction assumption
applies). The remaining case turns out to be easy.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Case 1

Case 1: p′ is not on C .

p′

p

t

r
aL

ak
b

a

We swap the labels of p′
b
→ p and p′

a
→ t. If p′ was on the a-path

from p to r , then the swapping creates a new a-cycle increasing
the number of states on the a-cycles. If p′ was not on the a-path
from p to r , then the level of p′ w.r.t. a becomes L+ 1 whence all
states of maximal level w.r.t. a in the new automaton are
a-ascendants of p′ and thus belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Case 1

Case 1: p′ is not on C .

p′

p

t

r
aL

ak
b

a
p′

p

t

r
aL

ak
a

b

We swap the labels of p′
b
→ p and p′

a
→ t. If p′ was on the a-path

from p to r , then the swapping creates a new a-cycle increasing
the number of states on the a-cycles. If p′ was not on the a-path
from p to r , then the level of p′ w.r.t. a becomes L+ 1 whence all
states of maximal level w.r.t. a in the new automaton are
a-ascendants of p′ and thus belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Case 1

Case 1: p′ is not on C .

p′

p

t

r
aL

ak
b

a
p′

p

t

r
aL

ak
a

b

We swap the labels of p′
b
→ p and p′

a
→ t. If p′ was on the a-path

from p to r , then the swapping creates a new a-cycle increasing
the number of states on the a-cycles. If p′ was not on the a-path
from p to r , then the level of p′ w.r.t. a becomes L+ 1 whence all
states of maximal level w.r.t. a in the new automaton are
a-ascendants of p′ and thus belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Case 1

Case 1: p′ is not on C .

p′

p

t

r
aL

ak
b

a
p′

p

t

r
aL

ak
a

b

We swap the labels of p′
b
→ p and p′

a
→ t. If p′ was on the a-path

from p to r , then the swapping creates a new a-cycle increasing
the number of states on the a-cycles. If p′ was not on the a-path
from p to r , then the level of p′ w.r.t. a becomes L+ 1 whence all
states of maximal level w.r.t. a in the new automaton are
a-ascendants of p′ and thus belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.1

Case 2: p′ is on C . Let k1 be the least integer such that
r . ak1 = p′. The state t = p′ . a is also on C . Let k2 be the least
integer such that t . ak2 = r . Then the length of C is k1 + k2 + 1.

Subcase 2.1: k2 6= L. Again, we swap the labels of p′
b
→ p and

p′
a
→ t. If k2 < L, then the swapping creates an a-cycle of length

k1 + L+ 1 > k1 + k2 + 1 increasing the number of states on the
a-cycles. If k2 > L, then the level of t w.r.t. a becomes k2 whence
all states of maximal level w.r.t. a in the new automaton are
a-ascendants of t and thus belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.1

Case 2: p′ is on C . Let k1 be the least integer such that
r . ak1 = p′. The state t = p′ . a is also on C . Let k2 be the least
integer such that t . ak2 = r . Then the length of C is k1 + k2 + 1.

p′ p

t

r
aL

ak1

ak2

b

a

Subcase 2.1: k2 6= L. Again, we swap the labels of p′
b
→ p and

p′
a
→ t. If k2 < L, then the swapping creates an a-cycle of length

k1 + L+ 1 > k1 + k2 + 1 increasing the number of states on the
a-cycles. If k2 > L, then the level of t w.r.t. a becomes k2 whence
all states of maximal level w.r.t. a in the new automaton are
a-ascendants of t and thus belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.1

Case 2: p′ is on C . Let k1 be the least integer such that
r . ak1 = p′. The state t = p′ . a is also on C . Let k2 be the least
integer such that t . ak2 = r . Then the length of C is k1 + k2 + 1.

p′ p

t

r
aL

ak1

ak2

b

a

Subcase 2.1: k2 6= L. Again, we swap the labels of p′
b
→ p and

p′
a
→ t. If k2 < L, then the swapping creates an a-cycle of length

k1 + L+ 1 > k1 + k2 + 1 increasing the number of states on the
a-cycles. If k2 > L, then the level of t w.r.t. a becomes k2 whence
all states of maximal level w.r.t. a in the new automaton are
a-ascendants of t and thus belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.1

Case 2: p′ is on C . Let k1 be the least integer such that
r . ak1 = p′. The state t = p′ . a is also on C . Let k2 be the least
integer such that t . ak2 = r . Then the length of C is k1 + k2 + 1.

p′ p

t

r
aL

ak1

ak2

b

a

p′ p

t

r
aL

ak1

ak2

a

b

Subcase 2.1: k2 6= L. Again, we swap the labels of p′
b
→ p and

p′
a
→ t. If k2 < L, then the swapping creates an a-cycle of length

k1 + L+ 1 > k1 + k2 + 1 increasing the number of states on the
a-cycles. If k2 > L, then the level of t w.r.t. a becomes k2 whence
all states of maximal level w.r.t. a in the new automaton are
a-ascendants of t and thus belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.1

Case 2: p′ is on C . Let k1 be the least integer such that
r . ak1 = p′. The state t = p′ . a is also on C . Let k2 be the least
integer such that t . ak2 = r . Then the length of C is k1 + k2 + 1.

p′ p

t

r
aL

ak1

ak2

b

a

p′ p

t

r
aL

ak1

ak2

a

b

Subcase 2.1: k2 6= L. Again, we swap the labels of p′
b
→ p and

p′
a
→ t. If k2 < L, then the swapping creates an a-cycle of length

k1 + L+ 1 > k1 + k2 + 1 increasing the number of states on the
a-cycles. If k2 > L, then the level of t w.r.t. a becomes k2 whence
all states of maximal level w.r.t. a in the new automaton are
a-ascendants of t and thus belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.1

Case 2: p′ is on C . Let k1 be the least integer such that
r . ak1 = p′. The state t = p′ . a is also on C . Let k2 be the least
integer such that t . ak2 = r . Then the length of C is k1 + k2 + 1.

p′ p

t

r
aL

ak1

ak2

b

a

p′ p

t

r
aL

ak1

ak2

a

b

Subcase 2.1: k2 6= L. Again, we swap the labels of p′
b
→ p and

p′
a
→ t. If k2 < L, then the swapping creates an a-cycle of length

k1 + L+ 1 > k1 + k2 + 1 increasing the number of states on the
a-cycles. If k2 > L, then the level of t w.r.t. a becomes k2 whence
all states of maximal level w.r.t. a in the new automaton are
a-ascendants of t and thus belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.2

Let s be the state of C such that s . a = r .
Subcase 2.2: k2 = L and s is not a bunch. Since s is not a
bunch, there is a letter c such that s ′ = s . c 6= r .

We swap the labels of s
c
→ s ′ and s

a
→ r . If r still lies on an

a-cycle, then the length of the a-cycle is at least k1 + k2 + 2 and
the number of states on the a-cycles increases. Otherwise, the
level of r w.r.t. a becomes at least k1 + k2 + 1 > L whence all
states of maximal level w.r.t. a in the new automaton are
a-ascendants of r and belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.2

Let s be the state of C such that s . a = r .
Subcase 2.2: k2 = L and s is not a bunch. Since s is not a
bunch, there is a letter c such that s ′ = s . c 6= r .

We swap the labels of s
c
→ s ′ and s

a
→ r . If r still lies on an

a-cycle, then the length of the a-cycle is at least k1 + k2 + 2 and
the number of states on the a-cycles increases. Otherwise, the
level of r w.r.t. a becomes at least k1 + k2 + 1 > L whence all
states of maximal level w.r.t. a in the new automaton are
a-ascendants of r and belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.2

Let s be the state of C such that s . a = r .
Subcase 2.2: k2 = L and s is not a bunch. Since s is not a
bunch, there is a letter c such that s ′ = s . c 6= r .

p′ p

t

r

s s ′

aL

ak1

ak2−1

a

c

b

a

We swap the labels of s
c
→ s ′ and s

a
→ r . If r still lies on an

a-cycle, then the length of the a-cycle is at least k1 + k2 + 2 and
the number of states on the a-cycles increases. Otherwise, the
level of r w.r.t. a becomes at least k1 + k2 + 1 > L whence all
states of maximal level w.r.t. a in the new automaton are
a-ascendants of r and belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.2

Let s be the state of C such that s . a = r .
Subcase 2.2: k2 = L and s is not a bunch. Since s is not a
bunch, there is a letter c such that s ′ = s . c 6= r .

p′ p

t

r

s s ′

aL

ak1

ak2−1

a

c

b

a

p′ p

t

r

s s ′

aL

ak1

ak2−1

c

a

b

a

We swap the labels of s
c
→ s ′ and s

a
→ r . If r still lies on an

a-cycle, then the length of the a-cycle is at least k1 + k2 + 2 and
the number of states on the a-cycles increases. Otherwise, the
level of r w.r.t. a becomes at least k1 + k2 + 1 > L whence all
states of maximal level w.r.t. a in the new automaton are
a-ascendants of r and belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.2

Let s be the state of C such that s . a = r .
Subcase 2.2: k2 = L and s is not a bunch. Since s is not a
bunch, there is a letter c such that s ′ = s . c 6= r .

p′ p

t

r

s s ′

aL

ak1

ak2−1

a

c

b

a

p′ p

t

r

s s ′

aL

ak1

ak2−1

c

a

b

a

We swap the labels of s
c
→ s ′ and s

a
→ r . If r still lies on an

a-cycle, then the length of the a-cycle is at least k1 + k2 + 2 and
the number of states on the a-cycles increases. Otherwise, the
level of r w.r.t. a becomes at least k1 + k2 + 1 > L whence all
states of maximal level w.r.t. a in the new automaton are
a-ascendants of r and belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.2

Let s be the state of C such that s . a = r .
Subcase 2.2: k2 = L and s is not a bunch. Since s is not a
bunch, there is a letter c such that s ′ = s . c 6= r .

p′ p

t

r

s s ′

aL

ak1

ak2−1

a

c

b

a

p′ p

t

r

s s ′

aL

ak1

ak2−1

c

a

b

a

We swap the labels of s
c
→ s ′ and s

a
→ r . If r still lies on an

a-cycle, then the length of the a-cycle is at least k1 + k2 + 2 and
the number of states on the a-cycles increases. Otherwise, the
level of r w.r.t. a becomes at least k1 + k2 + 1 > L whence all
states of maximal level w.r.t. a in the new automaton are
a-ascendants of r and belong to the same tree.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.3

Let q be the state on the a-path from p to r such that q . a = r .
Subcase 2.3: k2 = L and q is not a bunch. Since q is not a
bunch, there is a letter c such that q′ = q . c 6= r .

If we swap the labels of p′
b
→ p and p′

a
→ t, we find ourselves in

the conditions of Subcase 2.2 (with q and q′ playing the roles of s
and s ′ respectively).

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.3

Let q be the state on the a-path from p to r such that q . a = r .
Subcase 2.3: k2 = L and q is not a bunch. Since q is not a
bunch, there is a letter c such that q′ = q . c 6= r .

If we swap the labels of p′
b
→ p and p′

a
→ t, we find ourselves in

the conditions of Subcase 2.2 (with q and q′ playing the roles of s
and s ′ respectively).

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.3

Let q be the state on the a-path from p to r such that q . a = r .
Subcase 2.3: k2 = L and q is not a bunch. Since q is not a
bunch, there is a letter c such that q′ = q . c 6= r .

p′ p

t

rq

q′

aL−1

ak1

ak2

a

c

b

a

If we swap the labels of p′
b
→ p and p′

a
→ t, we find ourselves in

the conditions of Subcase 2.2 (with q and q′ playing the roles of s
and s ′ respectively).

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.3

Let q be the state on the a-path from p to r such that q . a = r .
Subcase 2.3: k2 = L and q is not a bunch. Since q is not a
bunch, there is a letter c such that q′ = q . c 6= r .

p′ p

t

rq

q′

aL−1

ak1

ak2

a

c

b

a

p′ p

t

rq

q′

aL−1

ak1

ak2

a

c

a

b

If we swap the labels of p′
b
→ p and p′

a
→ t, we find ourselves in

the conditions of Subcase 2.2 (with q and q′ playing the roles of s
and s ′ respectively).

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.4

Subcase 2.4: k2 = L and both s and q are bunches.

In this case it is clear that q and s form a stable pair. This
completes the proof.

The proof can be ‘unfolded’ to a quadratic (in |V |) algorithm to
find a synchronizing coloring of a given admissible digraph
Γ = (V ,E) – Marie-Pierre Béal and Dominique Perrin, 2008.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.4

Subcase 2.4: k2 = L and both s and q are bunches.

p′ p

t

r

q

s

aL−1

ak1

ak2−1

a
b

a

a

In this case it is clear that q and s form a stable pair. This
completes the proof.

The proof can be ‘unfolded’ to a quadratic (in |V |) algorithm to
find a synchronizing coloring of a given admissible digraph
Γ = (V ,E) – Marie-Pierre Béal and Dominique Perrin, 2008.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.4

Subcase 2.4: k2 = L and both s and q are bunches.

p′ p

t

r

q

s

aL−1

ak1

ak2−1

a
b

a

a

In this case it is clear that q and s form a stable pair. This
completes the proof.

The proof can be ‘unfolded’ to a quadratic (in |V |) algorithm to
find a synchronizing coloring of a given admissible digraph
Γ = (V ,E) – Marie-Pierre Béal and Dominique Perrin, 2008.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.4

Subcase 2.4: k2 = L and both s and q are bunches.

p′ p

t

r

q

s

aL−1

ak1

ak2−1

a
b

a

a

In this case it is clear that q and s form a stable pair. This
completes the proof.

The proof can be ‘unfolded’ to a quadratic (in |V |) algorithm to
find a synchronizing coloring of a given admissible digraph
Γ = (V ,E) – Marie-Pierre Béal and Dominique Perrin, 2008.

Mikhail Volkov Synchronizing Finite Automata

Induction Step: Subcase 2.4

Subcase 2.4: k2 = L and both s and q are bunches.

p′ p

t

r

q

s

aL−1

ak1

ak2−1

a
b

a

a

In this case it is clear that q and s form a stable pair. This
completes the proof.

The proof can be ‘unfolded’ to a quadratic (in |V |) algorithm to
find a synchronizing coloring of a given admissible digraph
Γ = (V ,E) – Marie-Pierre Béal and Dominique Perrin, 2008.

Mikhail Volkov Synchronizing Finite Automata

An Application

Recall the connection between maximal prefix codes and automata
discussed in Lecture 1.

Simple cycles in the automaton on the right correspond to
codewords. Thus, if a finite maximal prefix code is such that the
g.c.d. of lengths of its codewords is 1, then there exists a
synchronized code with the same lengths of codewords
(equivalently, with the same tree.) This was proved by Dominique
Perrin and Marcel-Paul Schützenberger in 1992.

Mikhail Volkov Synchronizing Finite Automata

An Application

Recall the connection between maximal prefix codes and automata
discussed in Lecture 1.

0010 0011 0110 0111

001000 011010 110 111

00 01 1110

0 1

ε

00 01 11

001 011

0 1

ε

Simple cycles in the automaton on the right correspond to
codewords. Thus, if a finite maximal prefix code is such that the
g.c.d. of lengths of its codewords is 1, then there exists a
synchronized code with the same lengths of codewords
(equivalently, with the same tree.) This was proved by Dominique
Perrin and Marcel-Paul Schützenberger in 1992.

Mikhail Volkov Synchronizing Finite Automata

An Application

Recall the connection between maximal prefix codes and automata
discussed in Lecture 1.

0010 0011 0110 0111

001000 011010 110 111

00 01 1110

0 1

ε

00 01 11

001 011

0 1

ε

Simple cycles in the automaton on the right correspond to
codewords. Thus, if a finite maximal prefix code is such that the
g.c.d. of lengths of its codewords is 1, then there exists a
synchronized code with the same lengths of codewords
(equivalently, with the same tree.) This was proved by Dominique
Perrin and Marcel-Paul Schützenberger in 1992.

Mikhail Volkov Synchronizing Finite Automata

An Application

Recall the connection between maximal prefix codes and automata
discussed in Lecture 1.

0010 0011 0110 0111

001000 011010 110 111

00 01 1110

0 1

ε

00 01 11

001 011

0 1

ε

Simple cycles in the automaton on the right correspond to
codewords. Thus, if a finite maximal prefix code is such that the
g.c.d. of lengths of its codewords is 1, then there exists a
synchronized code with the same lengths of codewords
(equivalently, with the same tree.) This was proved by Dominique
Perrin and Marcel-Paul Schützenberger in 1992.

Mikhail Volkov Synchronizing Finite Automata

An Application

Recall the connection between maximal prefix codes and automata
discussed in Lecture 1.

0010 0011 0110 0111

001000 011010 110 111

00 01 1110

0 1

ε

00 01 11

001 011

0 1

ε

Simple cycles in the automaton on the right correspond to
codewords. Thus, if a finite maximal prefix code is such that the
g.c.d. of lengths of its codewords is 1, then there exists a
synchronized code with the same lengths of codewords
(equivalently, with the same tree.) This was proved by Dominique
Perrin and Marcel-Paul Schützenberger in 1992.

Mikhail Volkov Synchronizing Finite Automata

