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Finite Automata

A finite automaton is a simple but extremely productive concept
that captures the idea of an object interacting with an
environment.
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Finite Automata

This notion originates in the seminal work by Alan Turing
(“On Computable Numbers, With an Application to the
Entscheidungsproblem”, Proc. London Math. Soc., Ser. 2, 42
(1936), 230–265).

“The behavior of the computer at any moment is determined by
the symbols which he is observing, and his state of mind at that
moment”.

Another important source is the work by neurobiologists Warren
McCulloch and Walter Pitts (“A Logical Calculus of the Ideas
Immanent in Nervous Activity”, Bull. Math. Biophys. 5 (1943),
115–133).
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Visualization

Finite automata admit a convenient visual representation.
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Visualization

Finite automata admit a convenient visual representation.
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Here one sees 4 states called 0,1,2,3, an action called a
and another action called b.
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Definitions and Terminology

We consider complete deterministic finite automata:

A = 〈Q,Σ, δ〉.

Here
• Q is the state set;
• Σ is the input alphabet;
• δ : Q ×Σ → Q is the transition function.

We need neither initial nor final states.
Σ∗ stands for the set of all words over Σ including the empty word.
The function δ uniquely extends to a function Q × Σ∗ → Q still
denoted by δ.
To simplify notation we often write q .w for δ(q,w)
and P .w for {δ(q,w) | q ∈ P}.
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Definitions and terminology

An automaton A = 〈Q,Σ, δ〉 is called synchronizing if there exists
a word w ∈ Σ∗ whose action resets A , that is, leaves the
automaton in one particular state no matter which state in Q it
started at: δ(q,w) = δ(q′,w) for all q, q′ ∈ Q.

We can also write this as |Q .w | = 1.

Any word w with this property is a reset word for A .

Other names:
• for automata: directable, cofinal, collapsible, etc;
• for words: directing, recurrent, synchronizing, etc.
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A reset word is abbbabbba: applying it at any state brings the au-
tomaton to the state 1.
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Cerný’s Paper

The notion was formalized in 1964 in a paper by Jan Černý
(Poznámka k homogénnym eksperimentom s konečnými
automatami, Matematicko-fyzikalny Časopis Slovensk. Akad. Vied,
14, no.3, 208–216 [in Slovak]) though implicitly it had been around
since at least 1956.

The idea of synchronization is pretty natural and of obvious
importance: we aim to restore control over a device whose current
state is not known.

Think of a satellite which loops around the Moon and cannot be
controlled from the Earth while “behind” the Moon (Černý’s
original motivation).
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Ashby’s Ghost Taming Automaton

The earliest synchronizing automaton that I was able to trace back
in the literature appeared in Ross Ashby’s ‘An Introduction to
Cybernetics’ (1956), pp. 60–61.
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Ashby’s Ghost Taming Automaton

The earliest synchronizing automaton that I was able to trace back
in the literature appeared in Ross Ashby’s ‘An Introduction to
Cybernetics’ (1956), pp. 60–61.

‘4/15. Materiality. The reader may now like to test the methods
of this chapter as an aid to solving the problem set by the
following letter. It justifies the statement made in S.1/2 that
cybernetics is not bound to the properties found in terrestrial
matter, nor does it draw its laws from them. What is important in
cybernetics is the extent to which the observed behaviour is regular
and reproducible.’
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Ashby’s Ghost Taming Automaton

The earliest synchronizing automaton that I was able to trace back
in the literature appeared in Ross Ashby’s ‘An Introduction to
Cybernetics’ (1956), pp. 60–61.

The letter presents a puzzle about two ghostly noises, Singing and
Laughter, in a haunted mansion. Each of the noises can be either
on or off, and their behaviour depends on combinations of two
possible actions, playing the organ or burning incense.
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Ashby’s Ghost Taming Automaton

The earliest synchronizing automaton that I was able to trace back
in the literature appeared in Ross Ashby’s ‘An Introduction to
Cybernetics’ (1956), pp. 60–61.

The letter presents a puzzle about two ghostly noises, Singing and
Laughter, in a haunted mansion. Each of the noises can be either
on or off, and their behaviour depends on combinations of two
possible actions, playing the organ or burning incense.
Under a suitable encoding, this leads to an automaton with
4 states and 4 input letters shown in the next slide.
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Ashby’s Ghost Taming Automaton
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c d

b a, c

ab, d

It is easy to see that this is a synchronizing automaton and acb is
its shortest reset word.

Mikhail Volkov Synchronizing Finite Automata



Ashby’s Ghost Taming Automaton

00 01

1011

a

b, d

d

b

c

a, c

c d

b a, c

ab, d

It is easy to see that this is a synchronizing automaton and acb is
its shortest reset word.

Mikhail Volkov Synchronizing Finite Automata



Ashby’s Ghost Taming Automaton

00 01

1011

a

b, d

d

b

c

a, c

c d

b a, c

ab, d

a

c

b

It is easy to see that this is a synchronizing automaton and acb is
its shortest reset word.

Mikhail Volkov Synchronizing Finite Automata



Ashby’s Ghost Taming Automaton

00 01

1011

a

b, d

d

b

c

a, c

c d

b a, c

ab, d

a, c

b

It is easy to see that this is a synchronizing automaton and acb is
its shortest reset word.

Mikhail Volkov Synchronizing Finite Automata



Ashby’s Ghost Taming Automaton

00 01

1011

a

b, d

d

b

c

a, c

c d

b a, c

ab, d a

c

b

It is easy to see that this is a synchronizing automaton and acb is
its shortest reset word.

Mikhail Volkov Synchronizing Finite Automata



Ashby’s Ghost Taming Automaton

00 01

1011

a

b, d

d

b

c

a, c

c d

b a, c

ab, d

a

c

b

It is easy to see that this is a synchronizing automaton and acb is
its shortest reset word.

Mikhail Volkov Synchronizing Finite Automata



Other Sources

It is not surprising that synchronizing automata were re-invented a
number of times:

• The notion was very natural by itself and fitted fairly well in what
was considered as the mainstream of automata theory in the 1960s.

• Černý’s paper published in Slovak language remained unknown in
the English-speaking world for quite a long time.

Example: A. E. Laemmel, B. Rudner, Study of the application of
coding theory, Report PIBEP-69-034, Polytechnic Inst. Brooklyn,
Dept. Electrophysics, Farmingdale, N.Y., 94 pp.
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Crash Course in Coding Theory

A prefix code over a finite alphabet Σ is a set X of words in Σ∗

such that no word of X is a prefix of another word of X . A prefix
code is maximal if it is not contained in another prefix code over
the same alphabet. A maximal prefix code X over Σ is
synchronized if there is a word x ∈ X ∗ such that for any word
w ∈ Σ∗, one has wx ∈ X ∗. Such a word x is called a synchronizing
word for X .
The advantage of synchronized codes is that they are able to
recover after a loss of synchronization between the decoder and
the coder caused by channel errors.

Mikhail Volkov Synchronizing Finite Automata



Crash Course in Coding Theory

A prefix code over a finite alphabet Σ is a set X of words in Σ∗

such that no word of X is a prefix of another word of X . A prefix
code is maximal if it is not contained in another prefix code over
the same alphabet. A maximal prefix code X over Σ is
synchronized if there is a word x ∈ X ∗ such that for any word
w ∈ Σ∗, one has wx ∈ X ∗. Such a word x is called a synchronizing
word for X .
The advantage of synchronized codes is that they are able to
recover after a loss of synchronization between the decoder and
the coder caused by channel errors.

Mikhail Volkov Synchronizing Finite Automata



Crash Course in Coding Theory

A prefix code over a finite alphabet Σ is a set X of words in Σ∗

such that no word of X is a prefix of another word of X . A prefix
code is maximal if it is not contained in another prefix code over
the same alphabet. A maximal prefix code X over Σ is
synchronized if there is a word x ∈ X ∗ such that for any word
w ∈ Σ∗, one has wx ∈ X ∗. Such a word x is called a synchronizing
word for X .
The advantage of synchronized codes is that they are able to
recover after a loss of synchronization between the decoder and
the coder caused by channel errors.

Mikhail Volkov Synchronizing Finite Automata



Crash Course in Coding Theory

A prefix code over a finite alphabet Σ is a set X of words in Σ∗

such that no word of X is a prefix of another word of X . A prefix
code is maximal if it is not contained in another prefix code over
the same alphabet. A maximal prefix code X over Σ is
synchronized if there is a word x ∈ X ∗ such that for any word
w ∈ Σ∗, one has wx ∈ X ∗. Such a word x is called a synchronizing
word for X .
The advantage of synchronized codes is that they are able to
recover after a loss of synchronization between the decoder and
the coder caused by channel errors.

Mikhail Volkov Synchronizing Finite Automata



Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, . . . is a synchronizing
word for X .

The vertical lines show the partition of each stream into code
words and the boldfaced code words indicate the position at which
the decoder resynchronizes.

Mikhail Volkov Synchronizing Finite Automata



Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, . . . is a synchronizing
word for X .

The vertical lines show the partition of each stream into code
words and the boldfaced code words indicate the position at which
the decoder resynchronizes.

Mikhail Volkov Synchronizing Finite Automata



Synchronized Codes

Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}.
Then X is a maximal prefix code and one can easily check that
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Σ = {0, 1}, X = {000, 0010, 0011, 010, 0110, 0111, 10, 110, 111}.
Then X is a maximal prefix code and one can easily check that
each of the words 010, 011110, 011111110, . . . is a synchronizing
word for X .

Sent 0 0 0 | 0 0 1 0 | 0 1 1 1 | . . .
Received 1 0 0 0 0 1 0 0 1 1 1 . . .

The vertical lines show the partition of each stream into code
words and the boldfaced code words indicate the position at which
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Codes vs Automata

If X is a finite maximal prefix code, then its decoding can be
implemented by a DFA.

Synchronized codes precisely correspond to synchronizing
automata!
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0010 0011 0110 0111

001000 011010 110 111

00 01 1110

0 1

ε

Synchronized codes precisely correspond to synchronizing
automata!
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If X is a finite maximal prefix code, then its decoding can be
implemented by a DFA.

0010 0011 0110 0111

001000 011010 110 111
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0 1

ε
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0 1
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Synchronized codes precisely correspond to synchronizing
automata!
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Re-inventing by Engineers

Since the 60s synchronizing automata have been considered as a
useful tool for testing of reactive systems (first circuits, later
protocols) and have been also applied in coding theory.
In the 80s, the notion was reinvented by engineers working in a
branch of robotics which deals with part handling problems in
industrial automation.
Suppose that one of the parts of a certain device has the following
shape:

Such parts arrive at manufacturing sites in boxes and they need to
be sorted and oriented before assembly.
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Re-inventing by Engineers

Assume that only four initial orientations of the part shown above
are possible, namely, the following ones:

Suppose that prior the assembly the part should take the
‘bump-left’ orientation (the second one in the picture). Thus, one
has to construct an orienter which action will put the part in the
prescribed position independently of its initial orientation.

Mikhail Volkov Synchronizing Finite Automata



Re-inventing by Engineers

Assume that only four initial orientations of the part shown above
are possible, namely, the following ones:

Suppose that prior the assembly the part should take the
‘bump-left’ orientation (the second one in the picture). Thus, one
has to construct an orienter which action will put the part in the
prescribed position independently of its initial orientation.

Mikhail Volkov Synchronizing Finite Automata



Re-inventing by Engineers

We put parts to be oriented on a conveyer belt which takes them
to the assembly point and let the stream of the parts encounter a
series of passive obstacles of two types (high and low) placed along
the belt.
A high obstacle is high enough so that any part on the belt
encounters this obstacle by its rightmost low angle.

❅
❅ ❅

❅
❅
❅

Being carried by the belt, the part then is forced to turn 90◦

clockwise.
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Re-inventing by Engineers

A low obstacle has the same effect whenever the part is in the
“bump-down” orientation; otherwise it does not touch the part
which therefore passes by without changing the orientation.
The following schema summarizes how the obstacles effect the
orientation of the part in question:

HIGH

low

HIGH

HIGH

HIGH

low

lowlow
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Re-inventing by Engineers

We met this picture a few slides ago:

0 1

23

a

b

b

b

b

a

aa

– this was our example of a synchronizing automaton, and we saw
that abbbabbba is a reset sequence of actions. Hence the series of
obstacles

low-HIGH-HIGH-HIGH-low-HIGH-HIGH-HIGH-low

yields the desired sensorless orienter.
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Re-inventing by Dynamics Theorists

A substitution on a finite alphabet X is a map σ : X → X+; the
substitution is said to be of constant length if all words σ(x),
x ∈ X , have the same length. One says that σ satisfies the
coincidence condition if there exist positive integers m and k such
that all words σk(x) have the same letter in the m-th position. For
an example, consider the substitution τ on X = {0, 1, 2} defined by
0 7→ 11, 1 7→ 12, 2 7→ 20. Calculate the iterations of τ up to τ4:

Thus, τ satisfies the coincidence condition (with k = 4, m = 7).
The coincidence condition completely characterizes the constant
length substitutions that give rise to dynamical systems
measure-theoretically isomorphic to a translation on a compact
Abelian group (Dekking, 1978).
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Re-inventing by Dynamics Theorists

There is a straightforward bijection between DFAs and constant
length substitutions. Each DFA A = 〈Q,Σ, δ〉 with
Σ = {a1, . . . , aℓ} defines a length ℓ substitution on Q that maps
every q ∈ Q to the word (q . a1) . . . (q . aℓ) ∈ Q+.

Mikhail Volkov Synchronizing Finite Automata



Re-inventing by Dynamics Theorists

There is a straightforward bijection between DFAs and constant
length substitutions. Each DFA A = 〈Q,Σ, δ〉 with
Σ = {a1, . . . , aℓ} defines a length ℓ substitution on Q that maps
every q ∈ Q to the word (q . a1) . . . (q . aℓ) ∈ Q+. For instance, the
automaton

0 1

23

a

b

b

b

b

a

aa

induces the substitution 0 7→ 11, 1 7→ 12, 2 7→ 23, 3 7→ 30.
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Re-inventing by Dynamics Theorists

Conversely, each substitution σ : X → X+ such that all words
σ(x), x ∈ X , have the same length ℓ gives rise to a DFA for which
X is the state set and which has ℓ input letters a1, . . . , aℓ acting on
X as follows: x . ai is the symbol in the i -th position of the word
σ(x).
Under this bijection substitutions satisfying the coincidence
condition correspond precisely to synchronizing automata, and
moreover, given a substitution, the number of iterations at which
the coincidence first occurs is equal to the minimum length of
reset word for the corresponding automaton.
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An Algebraic Framework

One may treat DFAs as unary algebras since each letter of the
input alphabet defines a unary operation on the state set. A term
in the language of such unary algebras is an expression t of the
form x .w , where x is a variable and w is a word over an alphabet
Σ. An identity is a formal equality between two terms. A DFA
A = 〈Q,Σ, δ〉 satisfies an identity t1 = t2, where the words
involved in the terms t1 and t2 are over Σ, if t1 and t2 take the
same value under each interpretation of their variables in the set Q.
Identities of unary algebras can be of the from either x . u = x . v
or x . u = y . v with x 6= y . A DFA is synchronizing if and only if it
satisfies an identity of the second type. Thus studying
synchronizing automata may be considered as a part of the
equational logic of unary algebras. In particular, synchronizing
automata over a fixed alphabet form a pseudovariety of unary
algebras.
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Possible Use in Biocomputing

In DNA-computing, there is fast progressing work by Ehud
Shapiro’s group on “soup of automata” (Programmable and
autonomous computing machine made of biomolecules, Nature
414, no.1 (November 22, 2001) 430–434; DNA molecule provides a
computing machine with both data and fuel, Proc. National Acad.
Sci. USA 100 (2003) 2191–2196, etc).
They have produced a solution containing 3× 1012 identical
DNA-based automata per µl. These automata can work in parallel
on different inputs (DNA strands), thus ending up in different and
unpredictable states. One has to feed the automata with an reset
sequence (again encoded by a DNA-strand) in order to get them
ready for a new use.
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Outline of the theory

• From the viewpoint of applications, real or yet imaginary,
algorithmic issues are of crucial importance.

• Synchronizing automata constitute an interesting combinatorial
object. Their studies from a combinatorial viewpoint are mainly
motivated by the Černý Conjecture.

• Interesting connections to symbolic dynamics have led to the
Road Coloring Problem.

• There are also interesting connections with the Perron–Frobenius
theory of non-negative matrices.

• In this minicourse I present in detail a recent solution to the
Road Coloring Problem.
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