On finite 5-primary groups G with disconnected Gruenberg – Kegel graph and restrictions on $\pi_1(G)$

Valeriya Kolpakova

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS

Yekaterinburg 2015 г.

Valeriya Kolpakova

Basic definitions and notations

Let G be a finite group. Denote by $\pi(G)$ the set of all prime divisors of the order of G.

n-primary group

Group G is called *n*-primary if $|\pi(G)| = n$.

Prime graph

Prime graph (or Gruenberg — Kegel graph) $\Gamma(G)$ of G is defined as the graph with vertex set $\pi(G)$, in which two vertices p and q are adjacent if and only if G contains an element of order pq.

We denote the number of connected components of $\Gamma(G)$ by s(G), and the set of its connected components by $\{\pi_i(G) \mid 1 \leq i \leq s(G)\}$; for the group G of even order believe that $2 \in \pi_1(G)$.

Valeriya Kolpakova

Basic definitions and notations

Socle of a group

Subgroup Soc(G) of G, generated by all minimal normal subgroups of G, is called *socle* of G.

Almost simple group

Group G is called *almost simple*, if P = Soc(G) is non-abelian simple group, i. e. $Inn(P) \cong P \leq G \cong H \leq Aut(P)$.

イヨト イラト イラト

${\sf Gruenberg}\ -{\sf Kegel}\ {\sf theorem}$

If G is a finite group with disconnected prime graph, then one of the following statements holds:

- ► G is a Frobenius group;
- ► G is a 2-Frobenius group (i.e. there exist subgroups A, B and C of G, such as G = ABC, where A and AB are normal in G, AB and BC are Frobenius groups with kernel A and B and complement B and C respectively);
- ► G is an extension of a nilpotent $\pi_1(G)$ -group by an almost simple group A with socle P, in addition, $s(G) \le s(P)$ and A/P is a $\pi_1(G)$ -group.

Formulation of the problem

Let G be a finite group with disconnected prime graph isomorphic neither to a Frobenius group nor to a 2-Frobenius group and $F(G) \neq 1$.

 $\overline{G} := G/F(G)$ is almost simple and is known.

Any connected component $\pi_i(G)$ of the graph $\Gamma(G)$ for i > 1 corresponds to a nilpotent isolated $\pi_i(G)$ -Hall subgroup $X_i(G)$ of G. Any non-trivial element x of $X_i(G)$ for i > 1 acts freely (without fixed points) on F(G).

Let K and L be neighboring terms of a chief series of G (K < L) containing in F(G). Then, the chief factor V = L/K is an elementary abelian *p*-group for some prime *p* (we will call it a *p*-chief factor of G), and it can be regarded as a faithful irreducible $GF(p)\overline{G}$ -module.

Brief background

- A. S. Kondrat'ev and I. V. Khramtsov studied the finite groups having disconnected prime graph with the number of vertices not greater than 4 [since 2010];
- A. S. Kondrat'ev determined finite almost simple 5-primary groups and their Gruenberg — Kegel graphs [2014];
- V. K. and A. S. Kondrat'ev obtained a description of chief factors of the commutator subgroups of finite non-solvable 5-primary groups G with disconnected Gruenberg-Kegel graph in the case when G/F(G) is almost simple n-primary group for n ≤ 4 [2015].

Theorem 1

Let G be a finite 5-primary group and $\pi_1(G) = \{2\}$. Then one of the following conditions holds:

(1) $G \cong O(G) \setminus S$ is Frobenius group, where O(G) is 4-primary abelian group and S is a cyclic 2-group or generalized quaternion group;

(2) G is Frobenius group with kernel $O_2(G)$ and 4-primary complement;

(3) $G \cong A \setminus (B \setminus C)$ is 2-Frobenius group, where $A = O_2(G)$, B is a cyclic 4-primary 2'-group and C is a cyclic 2-group;

(4) $G \cong L_2(r)$, $r \ge 65537$ is Mersenne or Ferma prime and $|\pi(r^2 - 1)| = 4$;

(5) $\overline{G} = G/O_2(G) \cong L_2(2^m)$, where either $m \in \{6, 8, 9\}$, or $m \ge 11$ is prime. If $O_2(G) \ne 1$, then $O_2(G)$ is a direct product of minimal normal subgroups of order 2^{2m} from G, each of these as \overline{G} -module is isomorphic to the natural $GF(2^m)SL_2(2^m)$ -module;

(6) $\overline{G} = G/O_2(G) \cong Sz(q)$, where $q = 2^p$, $p \ge 7$ and q - 1 primes, $|\pi(q - \varepsilon\sqrt{2q} + 1)| = 2$ and $|\pi(q + \varepsilon\sqrt{2q} + 1)| = 1$ for $\varepsilon \in \{+, -\}$.

 $5 \in \pi(q - \varepsilon \sqrt{2q} + 1)$. If $O_2(G) \neq 1$, then $O_2(G)$ is a direct product of minimal normal subgroups of order q^4 from G, each of these as \overline{G} -module is isomorphic to the natural GF(q)Sz(q)-module of dimension 4.

Valeriya Kolpakova

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS

イロト イヨト イヨト イヨト

Theorem 2

Let G be a finite 5-primary group with disconnected prime graph, $\overline{G} = G/F(G)$ is almost simple 5-primary group, $3 \in \pi(G)$ and $3 \notin \pi_1(G) \neq \{2\}$. Then one of the following conditions holds:

(1) *G* is isomorphic to $L_2(5^3)$ or $L_2(17^3)$; (2) $G \cong L_2(p)$, where either $p \ge 65537$ is Mersenne or Ferma prime and $|\pi(p^2 - 1)| = 4$, or $p \ge 41$ is prime, $|\pi(p^2 - 1)| = 4$ and $3 \in \pi(\frac{p+1}{2})$; (3) *G* is isomorphic to $L_2(3^r)$ or $PGL_2(3^r)$, where *r* is odd prime, $|\pi(3^{2r} - 1)| = 4$ and $r \notin \pi(G)$; (4) $G \cong L_2(p^r)$, where $p \in \{5, 17\}$, *r* is odd prime, $|\pi(p^{2r} - 1)| = 4$, $3 \in \pi(\frac{p^r+1}{2})$ and $r \notin \pi(G)$.

Valeriya Kolpakova

- 4月 1 4 日 1 4 日 1

Theorem [Higman (1968), Stewart (1973)]

Let G be a finite group, $1 \neq H \trianglelefteq G$, and $G/H \cong L_2(2^n)$, where $n \ge 2$. Suppose that $C_H(t) = 1$ for some element t of order 3 from G. Then $H = O_2(G)$ and H is the direct product of minimal normal subgroups of order 2^{2n} in G such that each of them as G/H-module isomorphic to the natural $GF(2^n)SL_2(2^n)$ -module.

Proposition [Stewart (1973)]

Let G be a finite group, $H \trianglelefteq G$, $G/H \cong L_2(q)$, where q is odd, q > 5, and $C_H(t) = 1$ for some element t of order 3 from $G \setminus H$. Then H = 1.

Lemma

Let G be a finite simple group, F be a field of characteristic p > 0, V be an absolutely irreducible FG-module, and β be a Brauer character of the module V. If g is an element of G of prime order different from p, then

$$\dim C_V(g) = (\beta|_{\langle g \rangle}, 1|_{\langle g \rangle}) = \frac{1}{|g|} \sum_{x \in \langle g \rangle} \beta(x).$$

Valeriya Kolpakova

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS

- 4月 1 4 日 1 4 日 1

Thank you for attention.

Valeriya Kolpakova

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS