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Defintion

Graph: Γ = (V ,E) where V vertex set, E ⊆
(V

2

)
edge set.

All graphs in this talk are simple.
x ∼ y if xy ∈ E .
x 6∼ y if xy 6∈ E .
d(x , y): length of a shortest path connecting x and y .
D(Γ) diameter (max distance in Γ)
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Distance-regular graphs

Definition
Γi(x) := {y | d(x , y) = i}

Definition
A connected graph Γ is called distance-regular (DRG) if
there are numbers ai ,bi , ci (0 ≤ i ≤ D = D(Γ)) s.t. if
d(x , y) = j then

#Γ1(y) ∩ Γj−1(x) = cj
#Γ1(y) ∩ Γj (x) = aj
#Γ1(y) ∩ Γj+1(x) = bj
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Hamming graphs

Definition
q ≥ 2, n ≥ 1 integers.
Q = {1, . . . ,q}
Hamming graph H(n,q) has vertex set Qn

x ∼ y if they differ in exactly one position.
Diameter equals n.

H(n,2) = n-cube.
DRG with ci = i .
Gives an algebraic frame work to study codes, especially
bounds on codes.
For example the Delsarte linear programming bound and
more recently the Schrijver bound.
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Eigenvalues of graphs

Let Γ be a graph.
The adjacency matrix for Γ is the symmetric matrix A
indexed by the vertices st. Axy = 1 if x ∼ y , and 0
otherwise.
The eigenvalues of A are called the eigenvalues of Γ.

As A is a real symmetric matrix all its eigenvalues are real.
We mainly will look at the smallest eigenvalue.
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Examples

In this section, we study the non-bipartite distance-regular
graphs with valency k and having a smallest eigenvalue not
larger than −k/2.

Examples
1 The odd polygons with valency 2;
2 The complete tripartite graphs Kt ,t ,t with valency 2t at least

2;
3 The folded (2D + 1)-cubes with valency 2D + 1 and

diameter D ≥ 2;
4 The Odd graphs with valency k at least 3;
5 The Hamming graphs H(D,3) with valency 2D where

D ≥ 2;
6 The dual polar graphs of type BD(2) with D ≥ 2;
7 The dual polar graphs of type 2A2D−1(2) with D ≥ 2.
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Conjecture

Conjecture
If D > 0 is large enough, and the smallest eigenvalue is not
larger than −k/2, then Γ is a member of one of the seven
families.
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Valency Bound

Theorem
For any real number 1 > α > 0 and any integer D ≥ 2, the
number of coconnected (i.e. the complement is connected)
non-bipartite distance-regular graphs with valency k at least
two and diameter D, having smallest eigenvalue θmin not larger
than −αk , is finite.
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Remarks
Note that the regular complete t-partite graphs Kt×s (s, t
positive integers at least 2) with valency k = (t − 1)s have
smallest eigenvalue −s = −k/(t − 1).

Note that there are infinitely many bipartite
distance-regular graphs with diameter 3, for example the
point-block incidence graphs of a projective plane of order
q, where q is a prime power.
The second largest eigenvalue for a distance-regular
graphs behaves quite differently from its smallest
eigenvalue. For example J(n,D) n ≥ 2D ≥ 4,
has valency D(n − D), and second largest eigenvalue
(n − D − 1)(D − 1)− 1. So for fixed diameter D, there are
infinitely many Johnson graphs J(n,D) with second largest
eigenvalue larger then k/2.
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Coconnected

Let Γ be a distance-regular graph with valency k ≥ 2 and
smallest eigenvalue λmin ≤ −k/2. It is easy to see that if the
graph is coconnected then a1 ≤ 1.
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Now we give the classification for diameter 2.

Diameter 2
1 The pentagon with intersection array {2,1; 1,1};
2 The Petersen graph with intersection array {3,2; 1,1};
3 The folded 5-cube with intersection array {5,4; 1,2};
4 The 3× 3-grid with intersection array {4,2; 1,2};
5 The generalized quadrangle GQ(2,2) with intersection

array {6,4; 1,3};
6 The generalized quadrangle GQ(2,4) with intersection

array {10,8; 1,5};
7 A complete tripartite graph Kt ,t ,t with t ≥ 2, with

intersection array {2t , t − 1; 1,2t};

No suprises.
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Diameter 3 and triangle-free

In the following we give the classification of distance-regular
graphs with diameter 3 valency k ≥ 2 with smallest eigenvalue
not larger than −k/2.

We improved our valency bound in this
case and obtained that the multiplicity of the smallest
eigenvalue is at most 64 and hence the valency is at most 64 if
a1 = 0.
Our result:

Diameter 3
1 The 7-gon, with intersection array {2,1,1; 1,1,1};
2 The Odd graph with valency 4, O4, with intersection array
{4,3,3; 1,1,2};

3 The Sylvester graph with intersection array {5,4,2; 1,1,4};
4 The second subconstituent of the Hoffman-Singleton graph

with intersection array {6,5,1; 1,1,6};
5 The Perkel graph with intersection array {6,5,2; 1,1,3};
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Diameter 3 and triangle-free, II

Theorem continued
1 The folded 7-cube with intersection array {7,6,5; 1,2,3};
2 A possible distance-regular graph with intersection array
{7,6,6; 1,1,2};

3 A possible distance-regular graph with intersection array
{8,7,5; 1,1,4};

4 The truncated Witt graph associated with M23 with
intersection array {15,14,12; 1,1,9};

5 The coset graph of the truncated binary Golay code with
intersection array {21,20,16; 1,2,12};

So this means that for diameter 3 and triangle-free, we obtain
quite a few more examples, then the members of the three
families.
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We obtained also a classification of diameter 3 and 4 for
distance-regular graphs having a triangle and smallest
eigenvalue at most −k/2.
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Thank you for attention.
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