◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

On non-bipartite distance-regular graphs with small smallest eigenvalue

J. Koolen*

*School of Mathematical Sciences USTC (Based on joint work with Zhi Qiao)

Yekaterinburg, August, 2015

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

- Distance-Regular Graphs
- Examples
- 2 Smallest eigenvalue is not larger than -k/2
 - Examples
 - A Valency Bound
 - Diameter 2

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

- Distance-Regular Graphs
- Examples
- 2 Smallest eigenvalue is not larger than -k/2
 - Examples
 - A Valency Bound
 - Diameter 2

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Defintion

Graph: $\Gamma = (V, E)$ where V vertex set, $E \subseteq {\binom{V}{2}}$ edge set.

- All graphs in this talk are simple.
- $x \sim y$ if $xy \in E$.
- $x \not\sim y$ if $xy \notin E$.
- *d*(*x*, *y*): length of a shortest path connecting *x* and *y*.
- D(Γ) diameter (max distance in Γ)

Distance-regular graphs

•
$$\Gamma_i(x) := \{y \mid d(x, y) = i\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Distance-regular graphs

Definition

•
$$\Gamma_i(x) := \{ y \mid d(x, y) = i \}$$

- A connected graph Γ is called distance-regular (DRG) if there are numbers a_i, b_i, c_i (0 ≤ i ≤ D = D(Γ)) s.t. if d(x, y) = j then
 - $\#\Gamma_1(y) \cap \Gamma_{j-1}(x) = c_j$

•
$$\#\Gamma_1(y) \cap \Gamma_j(x) = a_j$$

•
$$\#\Gamma_1(y) \cap \Gamma_{j+1}(x) = b_j$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

- Distance-Regular Graphs
- Examples
- 2 Smallest eigenvalue is not larger than -k/2
 - Examples
 - A Valency Bound
 - Diameter 2

Hamming graphs

- $q \ge 2$, $n \ge 1$ integers.
- $Q = \{1, ..., q\}$
- Hamming graph H(n, q) has vertex set Q^n
- $\mathbf{x} \sim \mathbf{y}$ if they differ in exactly one position.
- Diameter equals n.

Hamming graphs

- $q \ge 2$, $n \ge 1$ integers.
- $Q = \{1, ..., q\}$
- Hamming graph H(n, q) has vertex set Qⁿ
- $\mathbf{x} \sim \mathbf{y}$ if they differ in exactly one position.
- Diameter equals n.
- H(n, 2) = n-cube.
- DRG with $c_i = i$.

Hamming graphs

- $q \ge 2$, $n \ge 1$ integers.
- $Q = \{1, ..., q\}$
- Hamming graph H(n, q) has vertex set Qⁿ
- $\mathbf{x} \sim \mathbf{y}$ if they differ in exactly one position.
- Diameter equals n.
- *H*(*n*, 2) = *n*-cube.
- DRG with $c_i = i$.
- Gives an algebraic frame work to study codes, especially bounds on codes.
- For example the Delsarte linear programming bound and more recently the Schrijver bound.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Eigenvalues of graphs

- Let Γ be a graph.
- The adjacency matrix for Γ is the symmetric matrix A indexed by the vertices st. A_{xy} = 1 if x ~ y, and 0 otherwise.
- The eigenvalues of A are called the eigenvalues of Γ.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Eigenvalues of graphs

- Let Γ be a graph.
- The adjacency matrix for Γ is the symmetric matrix A indexed by the vertices st. A_{xy} = 1 if x ~ y, and 0 otherwise.
- The eigenvalues of A are called the eigenvalues of Γ.
- As *A* is a real symmetric matrix all its eigenvalues are real. We mainly will look at the smallest eigenvalue.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Definitions

- Distance-Regular Graphs
- Examples

2 Smallest eigenvalue is not larger than -k/2

- Examples
- A Valency Bound
- Diameter 2

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Examples

In this section, we study the non-bipartite distance-regular graphs with valency k and having a smallest eigenvalue not larger than -k/2.

Examples

In this section, we study the non-bipartite distance-regular graphs with valency k and having a smallest eigenvalue not larger than -k/2.

Examples

- The odd polygons with valency 2;
- 2 The complete tripartite graphs $K_{t,t,t}$ with valency 2*t* at least 2;
- The folded (2D + 1)-cubes with valency 2D + 1 and diameter D ≥ 2;
- The Odd graphs with valency k at least 3;
- The Hamming graphs H(D,3) with valency 2D where $D \ge 2$;
- The dual polar graphs of type $B_D(2)$ with $D \ge 2$;
- ② The dual polar graphs of type ${}^{2}A_{2D-1}(2)$ with $D \ge 2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conjecture

Conjecture

If D > 0 is large enough, and the smallest eigenvalue is not larger than -k/2, then Γ is a member of one of the seven families.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Definitions

- Distance-Regular Graphs
- Examples

Smallest eigenvalue is not larger than -k/2

- Examples
- A Valency Bound
- Diameter 2

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Valency Bound

Theorem

For any real number $1 > \alpha > 0$ and any integer $D \ge 2$, the number of coconnected (i.e. the complement is connected) non-bipartite distance-regular graphs with valency *k* at least two and diameter *D*, having smallest eigenvalue θ_{\min} not larger than $-\alpha k$, is finite.

Remarks

• Note that the regular complete *t*-partite graphs $K_{t \times s}$ (*s*, *t* positive integers at least 2) with valency k = (t - 1)s have smallest eigenvalue -s = -k/(t - 1).

Remarks

- Note that the regular complete *t*-partite graphs $K_{t \times s}$ (*s*, *t* positive integers at least 2) with valency k = (t 1)s have smallest eigenvalue -s = -k/(t 1).
- Note that there are infinitely many bipartite distance-regular graphs with diameter 3, for example the point-block incidence graphs of a projective plane of order q, where q is a prime power.

Remarks

- Note that the regular complete *t*-partite graphs $K_{t \times s}$ (*s*, *t* positive integers at least 2) with valency k = (t 1)s have smallest eigenvalue -s = -k/(t 1).
- Note that there are infinitely many bipartite distance-regular graphs with diameter 3, for example the point-block incidence graphs of a projective plane of order *q*, where *q* is a prime power.
- The second largest eigenvalue for a distance-regular graphs behaves quite differently from its smallest eigenvalue. For example J(n, D) $n \ge 2D \ge 4$, has valency D(n D), and second largest eigenvalue (n D 1)(D 1) 1. So for fixed diameter *D*, there are infinitely many Johnson graphs J(n, D) with second largest eigenvalue larger then k/2.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Definitions

- Distance-Regular Graphs
- Examples

2 Smallest eigenvalue is not larger than -k/2

- Examples
- A Valency Bound
- Diameter 2

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Coconnected

Let Γ be a distance-regular graph with valency $k \ge 2$ and smallest eigenvalue $\lambda_{\min} \le -k/2$. It is easy to see that if the graph is coconnected then $a_1 \le 1$.

Now we give the classification for diameter 2.

Now we give the classification for diameter 2.

Diameter 2

- The pentagon with intersection array {2,1;1,1};
- The Petersen graph with intersection array {3,2;1,1};
- The folded 5-cube with intersection array {5,4; 1,2};
- The 3×3 -grid with intersection array $\{4, 2; 1, 2\}$;
- The generalized quadrangle GQ(2,2) with intersection array {6,4;1,3};
- The generalized quadrangle GQ(2,4) with intersection array {10,8;1,5};
- A complete tripartite graph $K_{t,t,t}$ with $t \ge 2$, with intersection array $\{2t, t-1; 1, 2t\};$

Now we give the classification for diameter 2.

Diameter 2

- The pentagon with intersection array {2,1;1,1};
- Interview of the provide the section and the section array (3, 2; 1, 1);
- The folded 5-cube with intersection array {5,4; 1,2};
- The 3×3 -grid with intersection array $\{4, 2; 1, 2\}$;
- The generalized quadrangle GQ(2,2) with intersection array {6,4;1,3};
- The generalized quadrangle GQ(2,4) with intersection array {10,8;1,5};
- A complete tripartite graph $K_{t,t,t}$ with $t \ge 2$, with intersection array $\{2t, t-1; 1, 2t\};$

No suprises.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Diameter 3 and triangle-free

In the following we give the classification of distance-regular graphs with diameter 3 valency $k \ge 2$ with smallest eigenvalue not larger than -k/2.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Diameter 3 and triangle-free

In the following we give the classification of distance-regular graphs with diameter 3 valency $k \ge 2$ with smallest eigenvalue not larger than -k/2. We improved our valency bound in this case and obtained that the multiplicity of the smallest eigenvalue is at most 64 and hence the valency is at most 64 if $a_1 = 0$.

Diameter 3 and triangle-free

In the following we give the classification of distance-regular graphs with diameter 3 valency $k \ge 2$ with smallest eigenvalue not larger than -k/2. We improved our valency bound in this case and obtained that the multiplicity of the smallest eigenvalue is at most 64 and hence the valency is at most 64 if $a_1 = 0$. Our result:

Diameter 3 The 7-gon, with intersection array {2,1,1;1,1,1}; The Odd graph with valency 4, O₄, with intersection array {4,3,3;1,1,2}; The Sylvester graph with intersection array {5,4,2;1,1,4}; The second subconstituent of the Hoffman-Singleton graph

- I he second subconstituent of the Hoffman-Singleton graph with intersection array {6,5,1;1,1,6};
- **(3)** The Perkel graph with intersection array $\{6, 5, 2; 1, 1, 3\}$;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Diameter 3 and triangle-free, II

Theorem continued

- The folded 7-cube with intersection array $\{7, 6, 5; 1, 2, 3\}$;
- A possible distance-regular graph with intersection array {7,6,6;1,1,2};
- A possible distance-regular graph with intersection array {8,7,5;1,1,4};
- The truncated Witt graph associated with M₂₃ with intersection array {15, 14, 12; 1, 1, 9};
- The coset graph of the truncated binary Golay code with intersection array {21, 20, 16; 1, 2, 12};

Diameter 3 and triangle-free, II

Theorem continued

- The folded 7-cube with intersection array $\{7, 6, 5; 1, 2, 3\};$
- A possible distance-regular graph with intersection array {7,6,6; 1, 1, 2};
- A possible distance-regular graph with intersection array {8,7,5;1,1,4};
- The truncated Witt graph associated with M₂₃ with intersection array {15, 14, 12; 1, 1, 9};
- The coset graph of the truncated binary Golay code with intersection array {21, 20, 16; 1, 2, 12};

So this means that for diameter 3 and triangle-free, we obtain quite a few more examples, then the members of the three families.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We obtained also a classification of diameter 3 and 4 for distance-regular graphs having a triangle and smallest eigenvalue at most -k/2.

Thank you for attention.

