On non-bipartite distance-regular graphs with small smallest eigenvalue

J. Koolen*

*School of Mathematical Sciences
USTC
(Based on joint work with Zhi Qiao)
Yekaterinburg, August, 2015

Outline

(9) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2

Outline

(1) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2

Defintion

Graph: $\Gamma=(V, E)$ where V vertex set, $E \subseteq\binom{V}{2}$ edge set.

- All graphs in this talk are simple.
- $x \sim y$ if $x y \in E$.
- $x \nsim y$ if $x y \notin E$.
- $d(x, y)$: length of a shortest path connecting x and y.
- $D(\Gamma)$ diameter (max distance in Γ)

Distance-regular graphs

Definition

$$
\text { - } \Gamma_{i}(x):=\{y \mid d(x, y)=i\}
$$

Distance-regular graphs

Definition

$$
\Gamma_{i}(x):=\{y \mid d(x, y)=i\}
$$

Definition

- A connected graph Γ is called distance-regular (DRG) if there are numbers $a_{i}, b_{i}, c_{i}(0 \leq i \leq D=D(\Gamma))$ s.t. if $d(x, y)=j$ then
- $\# \Gamma_{1}(y) \cap \Gamma_{j-1}(x)=c_{j}$
- \# $\Gamma_{1}(y) \cap \Gamma_{j}(x)=a_{j}$
- $\# \Gamma_{1}(y) \cap \Gamma_{j+1}(x)=b_{j}$

Outline

(9) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2

Hamming graphs

Definition

- $q \geq 2, n \geq 1$ integers.
- $Q=\{1, \ldots, q\}$
- Hamming graph $H(n, q)$ has vertex set Q^{n}
- $\mathbf{x} \sim \mathbf{y}$ if they differ in exactly one position.
- Diameter equals n.

Hamming graphs

Definition

- $q \geq 2, n \geq 1$ integers.
- $Q=\{1, \ldots, q\}$
- Hamming graph $H(n, q)$ has vertex set Q^{n}
- $\mathbf{x} \sim \mathbf{y}$ if they differ in exactly one position.
- Diameter equals n.
- $H(n, 2)=n$-cube .
- DRG with $c_{i}=i$.

Hamming graphs

Definition

- $q \geq 2, n \geq 1$ integers.
- $Q=\{1, \ldots, q\}$
- Hamming graph $H(n, q)$ has vertex set Q^{n}
- $\mathbf{x} \sim \mathbf{y}$ if they differ in exactly one position.
- Diameter equals n.
- $H(n, 2)=n$-cube .
- DRG with $c_{i}=i$.
- Gives an algebraic frame work to study codes, especially bounds on codes.
- For example the Delsarte linear programming bound and more recently the Schrijver bound.

Eigenvalues of graphs

- Let Γ be a graph.
- The adjacency matrix for Γ is the symmetric matrix A indexed by the vertices st. $A_{x y}=1$ if $x \sim y$, and 0 otherwise.
- The eigenvalues of A are called the eigenvalues of Γ.

Eigenvalues of graphs

- Let Γ be a graph.
- The adjacency matrix for Γ is the symmetric matrix A indexed by the vertices st. $A_{x y}=1$ if $x \sim y$, and 0 otherwise.
- The eigenvalues of A are called the eigenvalues of Γ.
- As A is a real symmetric matrix all its eigenvalues are real. We mainly will look at the smallest eigenvalue.

Outline

Defintions
 - Distance-Fegular Graphs
 - Examples

(2) Smallest eigenvalue is not larger than $-k / 2$

- Examples
- A Valency Bound
- Diameter 2

Examples

In this section, we study the non-bipartite distance-regular graphs with valency k and having a smallest eigenvalue not larger than $-k / 2$.

Examples

In this section, we study the non-bipartite distance-regular graphs with valency k and having a smallest eigenvalue not larger than $-k / 2$.

Examples

(1) The odd polygons with valency 2 ;
(2) The complete tripartite graphs $K_{t, t, t}$ with valency $2 t$ at least 2;
(0) The folded $(2 D+1)$-cubes with valency $2 D+1$ and diameter $D \geq 2$;
(9) The Odd graphs with valency k at least 3;
(0) The Hamming graphs $H(D, 3)$ with valency $2 D$ where $D \geq 2$;
(0) The dual polar graphs of type $B_{D}(2)$ with $D \geq 2$;
(- The dual polar graphs of type ${ }^{2} A_{2 D-1}(2)$ with $D \geq 2$.

Conjecture

Conjecture

If $D>0$ is large enough, and the smallest eigenvalue is not larger than $-k / 2$, then Γ is a member of one of the seven families.

Outline

Defintions
 - Distance-Fegular Graphs
 - Examples

(2) Smallest eigenvalue is not larger than $-k / 2$

- Examples
- A Valency Bound
- Diameter 2

Valency Bound

Theorem

For any real number $1>\alpha>0$ and any integer $D \geq 2$, the number of coconnected (i.e. the complement is connected) non-bipartite distance-regular graphs with valency k at least two and diameter D, having smallest eigenvalue $\theta_{\text {min }}$ not larger than $-\alpha k$, is finite.

Remarks

- Note that the regular complete t-partite graphs $K_{t \times s}(s, t$ positive integers at least 2) with valency $k=(t-1) s$ have smallest eigenvalue $-s=-k /(t-1)$.

Remarks

- Note that the regular complete t-partite graphs $K_{t \times s}(s, t$ positive integers at least 2) with valency $k=(t-1) s$ have smallest eigenvalue $-s=-k /(t-1)$.
- Note that there are infinitely many bipartite distance-regular graphs with diameter 3, for example the point-block incidence graphs of a projective plane of order q, where q is a prime power.

Remarks

- Note that the regular complete t-partite graphs $K_{t \times s}(s, t$ positive integers at least 2) with valency $k=(t-1) s$ have smallest eigenvalue $-s=-k /(t-1)$.
- Note that there are infinitely many bipartite distance-regular graphs with diameter 3 , for example the point-block incidence graphs of a projective plane of order q, where q is a prime power.
- The second largest eigenvalue for a distance-regular graphs behaves quite differently from its smallest eigenvalue. For example $J(n, D) n \geq 2 D \geq 4$, has valency $D(n-D)$, and second largest eigenvalue $(n-D-1)(D-1)-1$. So for fixed diameter D, there are infinitely many Johnson graphs $J(n, D)$ with second largest eigenvalue larger then $k / 2$.

Outline

Defintions
 - Distance-Regular Graphs
 - Examples

(2) Smallest eigenvalue is not larger than $-k / 2$

- Examples
- A Valency Bound
- Diameter 2

Coconnected

Let Γ be a distance-regular graph with valency $k \geq 2$ and smallest eigenvalue $\lambda_{\text {min }} \leq-k / 2$. It is easy to see that if the graph is coconnected then $a_{1} \leq 1$.

Now we give the classification for diameter 2.

Now we give the classification for diameter 2.

Diameter 2

(c) The pentagon with intersection array $\{2,1 ; 1,1\}$;
(2) The Petersen graph with intersection array $\{3,2 ; 1,1\}$;
(3) The folded 5 -cube with intersection array $\{5,4 ; 1,2\}$;
(1) The 3×3-grid with intersection array $\{4,2 ; 1,2\}$;
(6) The generalized quadrangle $G Q(2,2)$ with intersection array $\{6,4 ; 1,3\}$;
(6) The generalized quadrangle $G Q(2,4)$ with intersection array $\{10,8 ; 1,5\}$;
(-) A complete tripartite graph $K_{t, t, t}$ with $t \geq 2$, with intersection array $\{2 t, t-1 ; 1,2 t\}$;

Now we give the classification for diameter 2.

Diameter 2

(c) The pentagon with intersection array $\{2,1 ; 1,1\}$;
(2) The Petersen graph with intersection array $\{3,2 ; 1,1\}$;
(3) The folded 5 -cube with intersection array $\{5,4 ; 1,2\}$;
(1) The 3×3-grid with intersection array $\{4,2 ; 1,2\}$;
(6) The generalized quadrangle $G Q(2,2)$ with intersection array $\{6,4 ; 1,3\}$;
(6) The generalized quadrangle $G Q(2,4)$ with intersection array $\{10,8 ; 1,5\}$;
(0) A complete tripartite graph $K_{t, t, t}$ with $t \geq 2$, with intersection array $\{2 t, t-1 ; 1,2 t\}$;

No suprises.

Diameter 3 and triangle-free

In the following we give the classification of distance-regular graphs with diameter 3 valency $k \geq 2$ with smallest eigenvalue not larger than $-k / 2$.

Diameter 3 and triangle-free

In the following we give the classification of distance-regular graphs with diameter 3 valency $k \geq 2$ with smallest eigenvalue not larger than $-k / 2$. We improved our valency bound in this case and obtained that the multiplicity of the smallest eigenvalue is at most 64 and hence the valency is at most 64 if $a_{1}=0$.

Diameter 3 and triangle-free

In the following we give the classification of distance-regular graphs with diameter 3 valency $k \geq 2$ with smallest eigenvalue not larger than $-k / 2$. We improved our valency bound in this case and obtained that the multiplicity of the smallest eigenvalue is at most 64 and hence the valency is at most 64 if $a_{1}=0$.
Our result:

Diameter 3

(1) The 7 -gon, with intersection array $\{2,1,1 ; 1,1,1\}$;
(2) The Odd graph with valency $4, O_{4}$, with intersection array \{4,3,3; 1, 1, 2\};
(3) The Sylvester graph with intersection array $\{5,4,2 ; 1,1,4\}$;
(1) The second subconstituent of the Hoffman-Singleton graph with intersection array $\{6,5,1 ; 1,1,6\}$;
(6) The Perkel graph with intersection array $\{6,5,2 ; 1,1,3\}$;

Diameter 3 and triangle-free, II

Theorem continued

(1) The folded 7 -cube with intersection array $\{7,6,5 ; 1,2,3\}$;
(2) A possible distance-regular graph with intersection array $\{7,6,6 ; 1,1,2\} ;$
(3) A possible distance-regular graph with intersection array $\{8,7,5 ; 1,1,4\}$;
(4) The truncated Witt graph associated with M_{23} with intersection array $\{15,14,12 ; 1,1,9\}$;
(5) The coset graph of the truncated binary Golay code with intersection array $\{21,20,16 ; 1,2,12\}$;

Diameter 3 and triangle-free, II

Theorem continued

(1) The folded 7 -cube with intersection array $\{7,6,5 ; 1,2,3\}$;
(2) A possible distance-regular graph with intersection array $\{7,6,6 ; 1,1,2\} ;$
(3) A possible distance-regular graph with intersection array $\{8,7,5 ; 1,1,4\} ;$
(4) The truncated Witt graph associated with M_{23} with intersection array $\{15,14,12 ; 1,1,9\}$;
(5) The coset graph of the truncated binary Golay code with intersection array $\{21,20,16 ; 1,2,12\}$;

So this means that for diameter 3 and triangle-free, we obtain quite a few more examples, then the members of the three families.

We obtained also a classification of diameter 3 and 4 for distance-regular graphs having a triangle and smallest eigenvalue at most $-k / 2$.

Thank you for attention.

