The distribution of cycles of length $O(n)$ in the Star graph

Alexey Medvedev

Star graph

Star graph

The Star graph $S_{n}=\operatorname{Cay}\left(\operatorname{Sym}_{n}, S T\right), n \geqslant 2$, is a Cayley graph on the symmetric group $S_{y m}$ with the generating set of transpositions $S T=\left\{t_{i} \in S y m_{n}, 2 \leqslant i \leqslant n\right\}$ exchanging i 'th element of the permutation with the first.

Properties

The Star graph $S_{n}, n \geqslant 3$,

- is bipartite;
- contains even cycles of lengths C_{l}, where $6 \leqslant l \leqslant n!$;
- has diameter $D=\left\lfloor\frac{3(n-1)}{2}\right\rfloor$.

Motivation

Konstantinova, M., 2014

Each of vertices of $S_{n}, n \geqslant 3$, belongs to $\binom{n-1}{2}$ distinct 6-cycles of the following canonical form:

$$
C_{6}=\left(t_{k} t_{i}\right)^{3}, \quad 2 \leqslant i<k \leqslant n .
$$

Konstantinova, M., 2014

Each of vertices of $S_{n}, n \geqslant 4$, belongs to $3(n-3)(n-2)(n-1)$ distinct 8-cycles of the following canonical forms:

$$
\begin{array}{ll}
C_{8}^{1}=t_{k} t_{i} t_{j} t_{i} t_{k} t_{i} t_{j} t_{i}, & 2 \leqslant i \neq j \leqslant k-1 \\
C_{8}^{2}=t_{k} t_{j} t_{i} t_{j} t_{k} t_{i} t_{j} t_{i}, & 2 \leqslant i \neq j \leqslant k-1 \\
C_{8}^{3}=t_{k} t_{j} t_{i} t_{k} t_{j} t_{k} t_{i} t_{j}, & 2 \leqslant i \neq j \leqslant k-1 \\
C_{8}^{4}=t_{k} t_{j} t_{k} t_{i} t_{k} t_{j} t_{k} t_{i}, & 2 \leqslant i<j \leqslant k-1
\end{array}
$$

where $4 \leqslant k \leqslant n$.

Motivation

Oriented percolation model.

Consider a graph $G=(V, E)$ on n vertices with distinguished vertices $s, t \in V$ and edges oriented along shortest paths from s to t.

Motivation

Oriented percolation model.

Suppose every edge $e \in E$ in G is open with probability p, where $0 \leqslant p \leqslant 1$ and closed with probability $q=1-p$.

Motivation

Oriented percolation model.

Question: what is the smallest value of p for which
$\mathbf{P}_{n}(\exists$ open path from s to $t)=1$

Motivation

CEU $\left.\begin{array}{l}\text { CENTRAL } \\ \text { EUROPEAN } \\ \text { UNIVERSITY }\end{array}\right)$

Motivation

Oriented first passage percolation model.

Suppose every edge $e \in E$ in G has labelled by i.i.d. random variable ξ_{e}, representing the passage time of the edge.

Motivation

Oriented first passage percolation model.

Question: what is the time $T=T_{n}$ to reach vertex t from s as $n \rightarrow \infty$?

Motivation

Oriented percolation and first passage percolation.

Fill, Pemantle, 1993

For the hypercube H_{n}, with $s=\overline{0}$ and $t=\overline{1}$, the critical value of p for oriented percolation is $p=\frac{e}{n}$ and for the oriented first passage percolation converges the time T_{n} converges:

$$
T_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 1
$$

The proof is based on the distribution of $2 d$-cycles in graph H_{n}, where $2 \leqslant d \leqslant n$.

Motivation

The distribution of $2 d$-cycles in S_{n}

Consider the graph S_{n} from the identity vertex id.

Motivation

The distribution of $2 d$-cycles in S_{n}

For a while the graph is locally tree-like and there is a unique shortest paths to vertices at distance d.

Motivation

The distribution of $2 d$-cycles in S_{n}

At some point shortest paths intersect at vertex creating a $2 d$-cycle.

Motivation

The distribution of $2 d$-cycles in S_{n}

Our goal is to study the distribution of such $2 d$-cycles for $3 \leqslant d \leqslant D$.

Distance distribution of vertices

L.Wang, et. al., 2006

In the Star graph $S_{n}, n \geqslant 3$, the total number of vertices at distance $d, 1 \leqslant d \leqslant D$ from identity vertex id is given by

$$
N_{d}^{n}=\sum_{j \geqslant 0} \stackrel{n}{\Psi}_{d}^{j}
$$

where

$$
\stackrel{n}{\Psi}_{d}^{j}=\sum_{r=2}^{\min \{d-1, n-1\}}(r-1)!\binom{n-1}{d} \times \frac{1}{j} \stackrel{n-r}{ }_{\Psi^{j-1}}^{d-r-1}
$$

Any permutation $\pi \in$ Sym $_{n}$ can be represented uniquely in terms of non-intersecting cycles, i.e.

$$
\begin{aligned}
\pi & =\left(1 \pi_{1}^{0} \ldots \pi_{\ell_{0}}^{0}\right)\left(\pi_{1}^{1} \ldots \pi_{\ell_{1}}^{1}\right) \ldots\left(\pi_{1}^{k} \ldots \pi_{\ell_{k}}^{k}\right)(.) \ldots(.)= \\
& =\left(1 \pi^{0}\right)\left(\pi^{1}\right) \ldots\left(\pi^{k}\right)
\end{aligned}
$$

Denote the cycle of length ℓ containing the element " 1 " as $\ell-C O$ and not containing it as $\ell-C N$, then the vertices on the distance d may have either
(1) only a $(d+1)-C O$;
(2) an $m-C O, 1 \leqslant m \leqslant d-2$ and $k \geqslant 1$ items of $\ell_{i}-C N$, where $1 \leqslant i \leqslant k$, such that $d=k+(m-1)+\sum_{i=1}^{k} \ell_{i}$.

Shortest Paths Algorithm

Suppose $\pi \in$ Sym $_{n}$ is at distance d from the identity id. To obtain a shortest path we should apply the sequence of generating elements performing the following two operations:
(1) apply the transposition $t_{\pi_{1}^{0}}$ and contract element π_{1}^{0} of $\ell_{0}-C O$ into its own cycle of length 1 , obtaining the permutation π^{*} :

$$
\pi^{*}=\pi t_{\pi_{1}^{0}}=\left(1 \pi_{2}^{0} \ldots \pi_{l_{0}}^{0}\right)\left(\pi_{1}^{0}\right)\left(\pi^{1}\right)\left(\pi^{2}\right) \ldots\left(\pi^{k}\right)
$$

(2) apply one of transpositions $t_{\pi_{1}^{i}}, \ldots, t_{\pi l_{i}}$ and merge $\ell_{0}-C O$ cycle π^{0} and $\ell_{i}-C N$ cycle $\pi^{i}, i=1, \ldots, k$, obtaining the permutation π^{*} :

$$
\begin{aligned}
\pi^{*}=\pi t_{\pi_{j}^{i}} & =\left(1 \pi_{j}^{i} \pi_{j+1}^{i} \ldots \pi_{\ell_{i}}^{i} \pi_{1}^{i} \ldots \pi_{j-1}^{i} \pi_{1}^{0} \ldots \pi_{I_{0}}^{0}\right)\left(\pi^{2}\right) \ldots \\
& \ldots\left(\pi^{i-1}\right)\left(\pi^{i+1}\right) \ldots\left(\pi^{k}\right)
\end{aligned}
$$

where $1 \leq j \leq \ell_{i}$.

Exact results

Denote the $(\pi-i d)$-cycle of length $2 d$ the cycle formed by two shortest paths between id and vertex π at distance d.

Theorem 1

In the Star graph $S_{n}, n \geqslant 3$, the number of distinct (π-id)-cycles of length $2 d$, where $3 \leqslant d \leqslant n$, with vertex π having $1-C O$ and $(d-1)-C N$ in cyclic structure is given by

$$
N(1, d-1)=\frac{d-2}{2}(n-1) \ldots(n-d+1) .
$$

Exact results

Theorem 2

In the Star graph $S_{n}, n \geqslant 3$, the number of distinct (π-id)-cycles of length $2 d$, where $3 \leqslant d \leqslant n$, with vertex π having $(m+1)-C O, 1 \leqslant m \leqslant d-3$ and $\ell_{1}-C N, 2 \leqslant \ell_{1}=d-1-m$ in cyclic structure is given by

$$
N\left(m, \ell_{1}\right)=\frac{d(d-3)}{2}(n-1) \ldots(n-d+1)
$$

Exact results

Theorem 3

In the Star graph $S_{n}, n \geqslant 3$, the number of distinct (π-id)-cycles of length $2 d$, where $3 \leqslant d \leqslant n+1$, with vertex π having $1-C O$, and $\ell_{1}-C N$ and $\ell_{2}-C N$, where $d=\ell_{1}+\ell_{2}+2$, in cyclic structure is given by

$$
N\left(1, \ell_{1}, \ell_{2}\right)=C_{d}(n-1) \ldots(n-d+2),
$$

where

$$
C_{d}=\frac{1}{24}(d-5)\left((d-2)^{2}-2\right)\left(3 d^{3}-29 d^{2}+51 d+114\right)
$$

Asymptotic results

Theorem 4

In the Star graph $S_{n}, n \geqslant 3$, the number of distinct (π-id)-cycles of length $2 d$, where $3 \leqslant d \leqslant n+k-1$, with vertex π having $1-C O$ and k of $\ell_{i}-C N$, where $d=\ell_{1}+\cdots+\ell_{k}+k$, in cyclic structure is given by

$$
N\left(1, \ell_{1}, \ell_{2}, \ldots, \ell_{k}\right) \asymp(k!)^{2}(d-3 k-2)^{4 k-2}(n-1)(n-2) \ldots(n-d+k)
$$

Asymptotic results

Theorem 5

In the Star graph $S_{n}, n \geqslant 3$, the number of distinct (π-id)-cycles of length $2 d$, where $3 \leqslant d \leqslant n+k-1$, with vertex π having $m-C O$ and k of $\ell_{i}-C N$, where $d=\sum \ell_{i}+k+(m-1)$, in cyclic structure is given by

$$
N\left(m, \ell_{1}, \ell_{2}, \ldots, \ell_{k}\right) \asymp(k!)^{2}(d-3 k-2)^{4 k-1}(n-1) \ldots(n-d+k)
$$

Thank You!

Alexey Medvedev

 an_medvedev@yahoo.com http://www.personal.ceu.hu/students/13/Alexey_Medvedev/