The distribution of cycles of length O(n) in the Star graph

Alexey Medvedev

Star graph

Star graph

The Star graph $S_n = Cay(Sym_n, ST)$, $n \ge 2$, is a Cayley graph on the symmetric group Sym_n with the generating set of transpositions $ST = \{t_i \in Sym_n, 2 \le i \le n\}$ exchanging *i*'th element of the permutation with the first.

Properties

The Star graph S_n , $n \ge 3$,

- is bipartite;
- contains even cycles of lengths C_l , where $6 \leq l \leq n!$;
- has diameter $D = \lfloor \frac{3(n-1)}{2} \rfloor$.

Konstantinova, M., 2014

Each of vertices of S_n , $n \ge 3$, belongs to $\binom{n-1}{2}$ distinct 6-cycles of the following canonical form:

$$C_6 = (t_k t_i)^3, \quad 2 \leq i < k \leq n.$$

Konstantinova, M., 2014

Each of vertices of S_n , $n \ge 4$, belongs to 3(n-3)(n-2)(n-1) distinct 8-cycles of the following canonical forms:

$$\begin{split} C_8^1 &= t_k \ t_i \ t_j \ t_k \ t_i \ t_j \ t_i, \quad 2 \leqslant i \neq j \leqslant k-1; \\ C_8^2 &= t_k \ t_j \ t_i \ t_j \ t_k \ t_i \ t_j \ t_i, \quad 2 \leqslant i \neq j \leqslant k-1; \\ C_8^3 &= t_k \ t_j \ t_i \ t_k \ t_j \ t_k \ t_i \ t_j, \quad 2 \leqslant i \neq j \leqslant k-1; \\ C_8^4 &= t_k \ t_j \ t_k \ t_i \ t_k \ t_j \ t_k \ t_i, \quad 2 \leqslant i < j \leqslant k-1, \end{split}$$

where $4 \leq k \leq n$.

Alexey Medvedev — Short cycles in S_n — August 14, 2015 3/23

Oriented percolation model.

Consider a graph G = (V, E) on *n* vertices with distinguished vertices $s, t \in V$ and edges oriented along shortest paths from *s* to *t*.

Alexey Medvedev — Short cycles in S_n — August 14, 2015 4/23

Oriented percolation model.

Suppose every edge $e \in E$ in G is **open** with probability p, where $0 \leq p \leq 1$ and **closed** with probability q = 1 - p.

Alexey Medvedev — Short cycles in S_n — August 14, 2015 5/23

Oriented percolation model.

Question: what is the smallest value of p for which

 $\mathbf{P}_n(\exists \text{ open path from } s \text{ to } t) = 1$

Alexey Medvedev — Short cycles in S_n — August 14, 2015 6/23

Alexey Medvedev — Short cycles in S_n — August 14, 2015 7/23

Oriented first passage percolation model.

Suppose every edge $e \in E$ in G has labelled by i.i.d. random variable ξ_e , representing the passage time of the edge.

Alexey Medvedev — Short cycles in S_n — August 14, 2015 8/23

Oriented first passage percolation model.

Question: what is the time $T = T_n$ to reach vertex t from s as $n \to \infty$?

Alexey Medvedev — Short cycles in S_n — August 14, 2015 9/23

Oriented percolation and first passage percolation.

Fill, Pemantle, 1993

For the hypercube H_n , with $s = \overline{0}$ and $t = \overline{1}$, the critical value of p for oriented percolation is $p = \frac{e}{n}$ and for the oriented first passage percolation converges the time T_n converges:

$$T_n \xrightarrow[n \to \infty]{} 1$$

The proof is based on the distribution of 2*d*-cycles in graph H_n , where $2 \leq d \leq n$.

The distribution of 2*d*-cycles in S_n

Consider the graph S_n from the identity vertex *id*.

Alexey Medvedev — Short cycles in S_n — August 14, 2015 11/23

The distribution of 2d-cycles in S_n

For a while the graph is locally tree-like and there is a unique shortest paths to vertices at distance d.

The distribution of 2*d*-cycles in S_n

At some point shortest paths intersect at vertex creating a 2d-cycle.

The distribution of 2*d*-cycles in S_n

Our goal is to study the distribution of such 2*d*-cycles for $3 \leq d \leq D$.

Distance distribution of vertices

L.Wang, et. al., 2006

In the Star graph S_n , $n \ge 3$, the total number of vertices at distance d, $1 \le d \le D$ from identity vertex *id* is given by

$$N_d^n = \sum_{j \ge 0} \Psi_d^{nj},$$

where

$$\Psi_{d}^{nj} = \sum_{r=2}^{\min\{d-1,n-1\}} (r-1)! \binom{n-1}{d} \times \frac{1}{j} \Psi_{d-r-1}^{n-rj-1}.$$

Alexey Medvedev — Short cycles in S_n — August 14, 2015 15/23 Any permutation $\pi \in Sym_n$ can be represented uniquely in terms of non-intersecting cycles, i.e.

$$egin{aligned} \pi &= (1 \, \pi_1^0 \ldots \, \pi_{\ell_0}^0) (\pi_1^1 \, \ldots \, \pi_{\ell_1}^1) \ldots (\pi_1^k \, \ldots \, \pi_{\ell_k}^k) (.) \ldots (.) = \ &= (1 \pi^0) (\pi^1) \ldots (\pi^k) \end{aligned}$$

Denote the cycle of length ℓ containing the element "1" as $\ell - CO$ and not containing it as $\ell - CN$, then the vertices on the distance d may have either

- **1** only a (d + 1) CO;
- 2) an m CO, $1 \le m \le d 2$ and $k \ge 1$ items of $\ell_i CN$, where $1 \le i \le k$, such that $d = k + (m 1) + \sum_{i=1}^k \ell_i$.

Shortest Paths Algorithm

Suppose $\pi \in Sym_n$ is at distance *d* from the identity *id*. To obtain a shortest path we should apply the sequence of generating elements performing the following two operations:

• apply the transposition $t_{\pi_1^0}$ and **contract** element π_1^0 of $\ell_0 - CO$ into its own cycle of length 1, obtaining the permutation π^* :

$$\pi^* = \pi t_{\pi_1^0} = (1 \pi_2^0 \dots \pi_{l_0}^0)(\pi_1^0)(\pi^1)(\pi^2) \dots (\pi^k);$$

2 apply one of transpositions $t_{\pi_1^i}, \ldots, t_{\pi_{l_i}^i}$ and merge $\ell_0 - CO$ cycle π^0 and $\ell_i - CN$ cycle π^i , $i = 1, \ldots, k$, obtaining the permutation π^* :

$$\pi^* = \pi t_{\pi_j^i} = (1 \pi_j^i \pi_{j+1}^i \dots \pi_{\ell_i}^i \pi_1^i \dots \pi_{j-1}^i \pi_1^0 \dots \pi_{\ell_0}^0)(\pi^2) \dots \dots \dots (\pi^{i-1})(\pi^{i+1}) \dots (\pi^k),$$

where $1 \leq j \leq \ell_i$.

Alexey Medvedev — Short cycles in S_n — August 14, 2015 17/23

Exact results

Denote the $(\pi$ -*id*)-**cycle** of length 2*d* the cycle formed by two shortest paths between *id* and vertex π at distance *d*.

Theorem 1

In the Star graph S_n , $n \ge 3$, the number of distinct $(\pi - id)$ -cycles of length 2d, where $3 \le d \le n$, with vertex π having 1 - CO and (d - 1) - CN in cyclic structure is given by

$$N(1, d-1) = \frac{d-2}{2}(n-1)\dots(n-d+1).$$

Alexey Medvedev — Short cycles in S_n — August 14, 2015 18/23

Exact results

Theorem 2

In the Star graph S_n , $n \ge 3$, the number of distinct $(\pi - id)$ -cycles of length 2d, where $3 \le d \le n$, with vertex π having (m+1) - CO, $1 \le m \le d-3$ and $\ell_1 - CN$, $2 \le \ell_1 = d - 1 - m$ in cyclic structure is given by

$$N(m, \ell_1) = \frac{d(d-3)}{2}(n-1)\dots(n-d+1).$$

Alexey Medvedev — Short cycles in S_n — August 14, 2015 19/23

Exact results

Theorem 3

In the Star graph S_n , $n \ge 3$, the number of distinct $(\pi - id)$ -cycles of length 2*d*, where $3 \le d \le n + 1$, with vertex π having 1 - CO, and $\ell_1 - CN$ and $\ell_2 - CN$, where $d = \ell_1 + \ell_2 + 2$, in cyclic structure is given by

$$N(1, \ell_1, \ell_2) = C_d(n-1) \dots (n-d+2),$$

where

$$C_d = rac{1}{24}(d-5)\left((d-2)^2-2
ight)\left(3d^3-29d^2+51d+114
ight)$$

Alexey Medvedev — Short cycles in S_n — August 14, 2015 20/23

Asymptotic results

Theorem 4

In the Star graph S_n , $n \ge 3$, the number of distinct $(\pi-id)$ -cycles of length 2*d*, where $3 \le d \le n+k-1$, with vertex π having 1 - CO and *k* of $\ell_i - CN$, where $d = \ell_1 + \cdots + \ell_k + k$, in cyclic structure is given by

 $N(1, \ell_1, \ell_2, \ldots, \ell_k) \asymp (k!)^2 (d-3k-2)^{4k-2} (n-1)(n-2) \dots (n-d+k)$

Asymptotic results

Theorem 5

In the Star graph S_n , $n \ge 3$, the number of distinct $(\pi - id)$ -cycles of length 2d, where $3 \le d \le n + k - 1$, with vertex π having m - CO and k of $\ell_i - CN$, where $d = \sum \ell_i + k + (m - 1)$, in cyclic structure is given by

 $N(m, \ell_1, \ell_2, \ldots, \ell_k) \asymp (k!)^2 (d - 3k - 2)^{4k - 1} (n - 1) \ldots (n - d + k)$

Thank You!

Alexey Medvedev an_medvedev@yahoo.com http://www.personal.ceu.hu/students/13/Alexey_Medvedev/