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I shall give a survey of some results on the above-mentioned topic obtained
by the author jointly with his students, post-graduates or post-doctors.

The study of finite groups depending on their arithmetical properties
(orders of elements and subgroups, sizes of conjugacy classes, various π-
properties, degrees of irreducible characters and so on) is an important direction
in finite group theory having rich history. The classification of finite simple
groups reduces often this study to the case of almost simple groups, i. e.,
groups A such that Inn(P ) ≤ A ≤ Aut(P ) for a finite simple non-abelian
group P .

Let G be a finite group. Denote by ω(G) the set of all element orders
(the spectrum) of G and by π(G) the set π(G) of all prime divisors of |G|
(the prime spectrum) of G. The set ω(G) determines the prime graph (or the
Gruenberg—Kegel graph) Γ(G) = GK(G) of G, in which the vertex set is
π(G), and two vertices p and q are adjacent if and only if pq ∈ ω(G). The
graph Γ(G) can be considered as a subset of the spectrum ω(G) consisting
of all products of two distinct primes from ω(G).

Let s = s(G) be the number of connected components of GK(G) and let
{πi(G) | 1 ≤ i ≤ s(G)} be the set of connected components of GK(G). If
2 ∈ π(G), then we always suppose that 2 ∈ π1(G).
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The notion of prime graph appeared by the investigation some cohomological
problems related to integer representations of finite groups and was found
very fruitful. It is interesting that the prime graph Γ(G), in contrast to the
spectrum ω(G), can be determined by the character table of the group G. As
Isaacs observed, the well-known commuting graph Γ(G,G \ {1}) of a non-
abelian group G with Z(G) = 1 on the set G\{1} determines also the prime
graph Γ(G). Therefore, the prime graph of a finite group is its fundamental
arithmetical invariant, having numerous applications. An interesting general
problem arises: describe all finite groups whose prime graph has a given
property. The problems of the recognizability of finite groups by spectrum or
by prime graph are particular cases of such problem.

A finite group G is said to be recognizable by spectrum (resp. by prime
graph), if for any finite group H with ω(H) = ω(G) (resp. Γ(H) = Γ(G))
we have H ∼= G.

In the middle 1980th, Shi made first steps in the solving the problem of
the recognizability of finite simple groups by spectrum. A big progress in the
solving this problem is obtained today. So, it is practically reduced to the
case of almost simple groups.

We will consider some recent results of the study of finite groups by the
properties of their prime graphs only.
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The first result about finite groups with disconnected prime graph is the
following structural theorem obtained by Gruenberg and Kegel about 1975 in
an unpublished paper (the proof of this theorem was published in the paper
of Williams (J. Algebra, 1981), post-graduate of Gruenberg.

Theorem 1 (Gruenberg—Kegel theorem). If G is a finite group with
disconnected prime graph, then one of the following holds:

(a) G is a Frobenius group;
(b) G is a 2-Frobenius group, i. e., G = ABC, where A and AB are

normal subgroups of G, AB and BC are Frobenius groups with cores A and
B and complements B and C, respectively;

(c) G is an extension of a nilpotent π1(G)-group by a group A, where
Inn(P ) ≤ A ≤ Aut(P ), P is a finite simple group with s(G) ≤ s(P ), and
A/P is a π1(G)-group.

This theorem implies the complete description of solvable finite group
with disconnected prime graph (they are groups from items (a) or (b) of the
theorem).

Moreover, as Theorem 1 shows, the question of the studying a non-solvable
finite group with disconnected prime graph is reduced largely to the studying
some properties of simple non-abelian groups.

4



Williams (J. Algebra, 1981) obtained an explicit description of connected
components of the prime graph for all finite simple non-abelian groups except
the groups of Lie type of even characteristic.

AK (Mat. Sbornik, 1989) obtained such description for the remaining case
of the groups of Lie type of even characteristic.

Later this result was repeated by Iiyori and Yamaki (J. Algebra, 1993)
in connection with an application of prime graph to the proof of well-known
Frobenius conjecture.

But later, some inaccuracies in all three papers were found. So, Suzuki
indicated on a mistake in the paper of Iiyori and Yamaki. They (J. Algebra,
1996) corrected the mistake, but some their other inaccuracies are remained.

In a joint work of Mazurov and myself (Siberian Math. J., 2000), the
corresponding tables were corrected.
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According to Suzuki, a proper subgroup H of a group G is called isolated
subgroup (or CC-subgroup) in G if CG(h) ≤ H for all non-trivial element
and called TI-subgroup in G if the intersection H ∩Hg is equal to 1 or H for
all g ∈ G. It is easily to understand that an isolated subgroup H in a finite
group G is π(H)-Hall subgroup in G. It is well-known that the core and the
complement in a Frobenius group are its isolated subgroups.

Finite groups having an isolated subgroup are studied without the classification
of finite simple groups by many known algebraists (Frobenius, Suzuki, Feit,
Thompson, G. Higman, Arad, Chillag, Busarkin, Gorchakov, Podufalov and
others).
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Williams (J. Algebra, 1981) established a relation between connected
components of the graph Γ(G) and isolated subgroups of odd order in finite
non-solvable group G.

Theorem 2. If G is a finite non-solvable group with disconnected prime
graph then, for any i > 1, the group G contains a nilpotent isolated πi(G)-
Hall TI-subgroup Xi(G).

Theorems 1 and 2 imply that the class of finite groups with disconnected
prime graph coincides with the class of finite groups having an isolated
subgroup.

IfG is a finite simple group then these subgroupsXi(G) (i > 1) are abelian
and are determined to within the conjugacy. Moreover, the isomorphic types
of Xi(G) for i > 1 are also determined.

The classification of connected components of prime graph for finite simple
groups were applied by Lucido (Rend. Sem. Mat. Univ. Padova, 1999, 2002)
for obtaining analogous classification for all finite almost simple groups.
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Our attention draws a more detailed study of the class of finite groups
with disconnected prime graph.

The finite simple groups with disconnected prime graph compose sufficiently
restricted class of all finite simple groups, but include many “small” in various
senses groups which arise often in the investigations. For example, all finite
simple groups of exceptional Lie type besides the the groups E7(q) for q > 3,
as well as simple groups from the well-known "Atlas of finite groups" besides
the group A10, have disconnected prime graphs.

The following natural problem arises.

Problem 1. Study the finite non-solvable groups with disconnected prime
graph, which are not almost simple.

Problem 1 is solved for several particular cases only, because here some
non-trivial problems related with modular representations of finite almost
simple groups arise. Let us consider such a problem.
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Let G be a finite group with disconnected prime graph, and let G be
nonisomorphic to a Frobenius group or a 2-Frobenius group. Then, by the
Gruenberg–Kegel theorem, the group G := G/F (G) is almost simple and
is known by the above mentioned results. Assume that F (G) 6= 1. Each
connected component πi(G) of the graph Γ(G) for i > 1 corresponds to a
nilpotent isolated πi(G)-Hall subgroup Xi(G) of the group G. Any nontrivial
element x from Xi(G) (i > 1) acts fixed-point-freely (freely) on F (G), i. e.,
CF (G)(x

n) = 1 for all xn 6= 1. Let K and L be two neighboring terms of a
chief series of the group G and K < L ≤ F (G)). Then, the (chief) factor
V = L/K is an elementary abelian p-group for some prime p (we will call
it the p-chief factor of the group G), and we can consider it as a faithful
irreducible GF (p)G-module (since CG/K(V ) = F (G)/K). Moreover, any
nontrivial element from Xi(G) (i > 1) acts fixed-point-freely on V .

Therefore, the problem of studying the structure of the group G largely
reduces to the following problem, which is of independent interest.

Problem 2. For the finite almost simple group G and given prime p,
describe all irreducible GF (p)G-modules V such that an element of prime
order ( 6= p) from G acts on V fixed-point-freely.

Results on Problem 2 have numerous applications, in particular, for the
study of finite groups by the properties of their prime graphs.
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Extending and refining Problem 1 we obtain the following

Problem 3. Let G be a finite group, Q be a normal nontrivial subgroup
from G, G = G/Q be a known group and an element of prime order from
G \Q acts on Q fixed-points-freely. The following questions arise.

1) What are the chief factors of the group G in Q as G-modules?
2) What is the structure of the group Q (isomorphic type, nilpotency class,

exponent, derived length etc.)?
3) If Q is elementary abelian group, is the action of G on Q completely

irreducible?
4) Is the extension of G over Q splittable?

The well-known Thompson’s theorem (1959) implies that Q is a nilpotent
group in this situation. Results on the item 1) of Problem 3 are used for the
solving the remaining items of this problem. Moreover, they are useful for
the study of the reconizability of finite simple groups by spectrum or prime
graph.

Problem 3 for finite non-solvable groups can be considered as an extension
of Mazurov’s problem 17.72 from "Kourovka notebook" about 2-Frobenius
groups.

In spite of importance of the questions 1) — 4), we have a few results
about them. In general, this important problem is far from being solved.
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The first work, devoted to the study of the case when G is a simple
nonabelian group, was a classical work of G. Higman (lecture notes, 1968).
If G ∼= L2(2

m) for m ≥ 2 and an element of order 3 from G acts on Q fixed-
point-freely then Higman shows that Q is an elementary abelian 2-group, the
action of G on Q is completely irreducible and every 2-chief factors of G is
isomorphic to the natural GF (2m)SL2(2

m)-module.
Later Martineau (J. London Math. Soc. (2), 1972; Amer. J. Math. Soc.,

1972) obtained an analogous result for the case when G is isomorphic to the
Suzuki group Sz(2n) and an element of order 5 from G acts on Q fixed-point-
freely.

Continuing the work of Higman, Stewart (Proc. London Math. Soc., 1973)
showed that Q = 1 in the case when G ∼= L2(q) for odd q > 5 and an element
of order 3 from G acts on Q fixed-point-freely.

The papers of Prince (J. Algebra, 1977; Proc. Roy. Soc. Edinburgh. Sect
A, 1982), Zurek (Mitt. Math. Sem. Giessen, 1982), Holt and Plesken (Quart.
J. Math. Oxford. Ser. 2, 1986) were devoted to the study of the case, when
Q = O2(G), G ∼= A5 and an element of order 5 from G acts on Q fixed-point-
freely. This case is difficult, because in the case Q can be nonabelian group.
Prince and Zurek gave affirmative answers on the questions 1), 3) and 4). In
particular, Q is a product of G-invariant subgroups Qi’s, isomorphic to either
a homocyclic 2-group of the rank 4, or the special 2-group of order 28 with
the center of order 24 (isomorphic to the unipotent radical some parabolic
maximal subgroup in U5(2)). In addition, in the first case every 2-chief
factor of G involving in Qi is isomorphic to the orthogonal (permutational)
GF (2)A5-module, and in the second case the group Z(Qi) is isomorphic to
the orthogonal GF (2)A5-module, but Qi/Z(Qi) is isomorphic to the natural
GF (4)SL2(4)-module. By an early result of G. Higman (J. London Math.
Soc. (2), 1957), a theoretical upper bound of the nilpotency class of Q was 6.
Zurek conjectured that such bound must be 2. But later on, Holt and Plesken
proved that the nilpotency class of Q is at the most 3 and constructed an
example of the group Q of order 228 where this bound is reached. Using a
computer, they showed also that this is an example of minimal order.
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Prince (J. Algebra, 1977; Proc. Roy. Soc. Edinburgh. Sect A, 1982) proved
that if Q = O2(G), G ∼= A6 and an element of order 5 from G acts on Q
fixed-point-freely then the questions 1) – 4) are solved affirmatively.

Dolfi, Jabara and Lucido (Siberian Math. J., 2004) in the frame of the
classification of C55-groups proved that if G ∼= A6 and an element of order
5 from G acts on Q fixed-point-freely, then O(Q) is abelian, O(Q) = O3(G)
and 3-chief factors of G are isomorphic to the 4-dimentional permutational
GF (3)G-module. In this paper, it is asserted also that if G ∼= A5 and an
element of order 5 from G acts on Q fixed-point-freely, then O(Q) is abelian.
But this assertion is found wrong. Recently, Astill, Parker and Waldecker
(Siberian Math. J., 2012) proved that in this situation O(Q) is a nilpotent
group of class at most 2 and, for any odd prime p 6= 5, constructed a r-group
of class 2 admitting the group A5 with the mentioned property. Moreover, in
the last paper, the questions 1) – 4) are solved affirmatively for the cases when
an element of order 5 from G acts on Q fixed-point-freely and either Q =
O3(G) and G ∼= A6 or Q = O7(G) and G ∼= L2(49). These results refined
the classification of C55-groups, obtained by Dolfi, Jabara and Lucido.
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If the socle of the group G is a finite simple group of Lie type over a
field of a prime characteristic p, then, for the solving the item 1) of Problem
2, the classification of Guralnick and Tiep (J. Group Theory, 2003) of all
unisingular finite simple group of Lie type is useful. A finite simple group X
of Lie type over a field of a prime characteristic p is called unisingular if any
element s ∈ X has a non-trivial fixed point in any non-trivial finite abelian
p-group on which X acts.

Zavarnitsine (Sib. Math. J., 2008; Sib. Electron. Mat. Izv., 2011) found
some sufficient conditions for an element of a large prime order in the group
S = L±n (q), where q is a power of a prime p, to have non-zero fixed points in
S-modules over a field of characteristic p.
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The following problem is natural.

Problem 4. Let G = SLn(q), where q is a power of a prime p, and S be
a Singer cycle of G, i. e., a cyclic subgroup of order (qn−1)/(q−1). Classify
absolutely irreducible G-module in characteristic p on which an element of
prime order r from S acts fixed-point-freely. The natural irreducible GF (q)G-
module is such for all non-trivial elements of S.

Note that if H is a finite group with disconnected prime graph such that
F (H) 6= 1 and H = H/F (H) ∼= PSLn(q) for n ≥ 3 then the action (by
conjugacy) ofH on F (H) induces on each chief factor ofH involving to F (H)
a faithful irreducible H-module (for some field of prime order) in which all
non-trivial elements from a Singer cycle of the group H act fixed-point-freely.
It is very important case of Problem 1.

AK, Suprunenko and Osinovskaya (Trudy Inst. Mat. Mekh., 2013) solved
Problem 4 for the case when the residue modulo r of the number q generates
the multiplicative group of the fieldGF (r) or r ∈ {3, 5}. This result generalizes,
in particular, the well-known results by G. Higman (1968) and Stewart (1973)
which are obtained in the case when r = 3 and n = 2.

The considered partial results show that Problem 2 is complicated. In
general, this important problem is far from being solved.
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If the table of irreducible Brauer characters is known (for example, from
“An atlas of Brauer characters”, 1995 or GAP) then the following known
results can be applied for the solving the item 1) of Problem 2.

Proposition 1. Suppose that G is a finite quasi-simple group, F is a field
of characteristic p > 0, V is a faithful absolutely irreducible FG-module,
and β is a Brauer character of the module V . If g is an element in G of a
prime order coprime to p|Z(G)|, then

dim CV (g) = (β|〈g〉, 1|〈g〉) =
1

|g|
∑
x∈〈g〉

β(x).

Proposition 2. Let G be a finite group, F = GF (pm) the field of definition
of characterictic p for (absolutely) irreducible FG-module V , 〈σ〉 = Aut(F ),
V0 denote module V regarded as GF (p)G-module, and W = V F

0 . Then the
following holds:

(1) W =
⊕m

i=1 V
σi, where V σi is the module algebraically conjugated to

V by means of σi;
(2) V0 is an irreducible GF (p)G-module and, in particular, W is realized

as irreducible GF (p)G-module V0;
(3) irreducible GF (p)G-modules are found in a bijective correspondence

(up to isomorphism of modules) with the classes of algebraic conjugacy of
irreducible GF (p)G-modules (V0 corresponds to the class {V σi | 1 ≤ i ≤
m}).
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In the frame of above-mentioned Problem 1, we investigate finite groups
whose prime graph is disconnected and has a small number of vertices.

A finite group G is called n-primary if |π(G)| = n. First of all, let us
consider the trivial cases, when the prime graph of a finite group has one or
two vertices.

The class of 1-primary groups coincides with the boundless class of all
primary groups. Using Gruenberg-Kegel theorem and the properties of solvable
complements in finite Frobenius groups, it is not difficult to describe 2-
primary (biprimary) groups with disconnected prime graph. They are either
Frobenius groups or 2-Frobenius groups of a special form.

AK and his postgraduate Khramtsov (Trudy Inst. Mat. Mekh. UrO RAN,
2010; Sib. Electron. Mat. Izv., 2012) described the chief factors of 3-primary
groups with disconnected prime graph. In particular, the following theorem
is proved.

Theorem 3. Let G be a finite 3-group with disconnected prime graph and
G = G/F (G). Then, one of the following statements holds:

(1) G is a Frobenius group.
(2) G is a 2-Frobenius group.
(3) s(G) = 3 and either G is isomorphic to A5, A6, L2(7), L2(8), M10

or L2(17), or G/O2(G) ∼= L2(2
n), where n ∈ {2, 3} and O2(G) is a direct

product of minimal normal subgroups of the order 22n in G, each of which
as G-module is isomorphic to the natural GF (2n)SL2(2

n)-module.
(4) s(G) = 2, π1(G) = {2, 5} and G ∼= PGL2(9).
(5) s(G) = 2, π1(G) = {2, 3}, F (G) = O2(G) × O3(G), and one of the

following statements (i)− (viii) holds:
(i) G ∼= A5 or S5, any 2-chief factor of the group G as GF (2)G-module

is isomorphic to one of two 4-dimensional irreducible GF (2)G-module, any
3-chief factor of G as GF (3)G-module is isomorphic to the 4-dimensional
irreducible permutation GF (3)G-module.

(ii) G ∼= A6, S6 or M10, F (G) is the direct product of an elementary
abelian 2-group and an abelian 3-group, and F (G) 6= 1 for G ∼= A6 or M10.
If O2(G) 6= 1 then O2(G) is the direct product of G′-invariant subgroups of
order 16 that are as GF (2)G

′-module isomorphic to either the 4-dimensional
irreducible permutation GF (2)A6-module or conjugated with them by an
outer automorphism of S6. Any 3-chief factor in G′ as GF (3)G

′-module is
isomorphic to the 4-dimensional irreducible permutation GF (3)A6-module.

(iii) G ∼= U4(2) and F (G) = O2(G) is an elementary abelian 2-group.

16



Any 2-chief factor of the group G as GF (4)G-module is isomorphic to the
natural unitary 4-dimensional GF (4)SU4(2)-module.

(iv) G ∼= L2(8) or Aut(L2(8)), F (G) = O2(G), and F (G) 6= 1 for G ∼=
L2(8). Any 2-chief factor of the group G′ as GF (8)G

′-module is isomorphic
to the natural 2-dimensional GF (8)SL2(8)-module or 4-dimensional irreducible
GF (8)L2(8)-module.

(v) G ∼= L2(7) or PGL2(7), and F (G) 6= 1 for G ∼= L2(7). Any 2-chief
factor of the group G′ as GF (2)G

′-module is isomorphic to the natural 3-
dimensional GF (2)SL3(2) modul or to the module conjugated with them by
an outer involutive automorphism of the group SL3(2). Any 3-chief factor
of the group G′ as G′-module is isomorphic to the 3-dimensional irreducible
GF (9)L2(7)-module or the 6-dimensional absolutely irreducible GF (3)L2(7)-
module.

(vi) G ∼= U3(3) or Aut(U3(3))(∼= G2(2)). Any 2-chief factor of the group
G as GF (2)G-module is isomorphic to the 6-dimensional absolutely irreducible
GF (2)G-module. Any 3-chief factor of the group G′ as GF (9)G

′-module is
isomorphic to the natural unitary 3-dimensional GF (9)U3(3)-module or the
6-dimensional GF (9)U3(3)-module.

(vii) G ∼= L3(3) or Aut(L3(3)). Any 2-chief factor of the group G′ as
GF (2)G

′-module is isomorphic to the 12-dimensional absolutely irreducible
GF (2)L3(3)-module. Any 3-chief factor of the group G′ as GF (3)G

′-module
is isomorphic to one of the three absolutely irreducible GF (3)L3(3)-modules
of the dimensions 3, 6 or 15; for those dimensions up to isomorphism there
exists exactly two GF (3)L3(3)-modules that are conjugated by an outer involutive
automorphism of the group L3(3).

(viii) G ∼= L2(17) or PGL2(17) and F (G) 6= 1 for G ∼= L2(17). Any
2-chief factor of the group G′ as G′-module is isomorphic either to the 8-
dimensional absolutely irreducible GF (2)L2(17)-module, to the module conjugated
with them by an outer involutive automorphism of the group L2(17), to
the 16-dimensional absolutely irreducible GF (2)L2(17)-module, or to the
16-dimensional irreducible GF (8)L2(17)-module. Any 3-chief factor of the
group G as GF (3)G-module is isomorphic to the 16-dimensional absolutely
irreducible GF (3)G- module.

Each item of the theorem is realized.
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The proof of Theorem 7 uses the well-known description of finite simple
3-primary groups (see, for example, Herzog (J. Algebra, 1968)).

As a corollary of Theorem 5, the following result is obtained.

Theorem 4. The finite 3-primary almost simple group with disconnected
prime graph is recognizable by prime graph if and only if it is isomorphic to
L2(17).

AK and Khramtsov (Trudy Trudy Inst. Mat. Mekh. UrO RAN, 2011)
described chief factors of commutator subgroups of finite 4-primary groups
with disconnected prime graph. In some cases, all possibilities for such chief
factors were not determined; however, the existence of at least one possibility
was proved. The description is too large so we formulate here only first
theorem, which was proved.

Theorem 5. Let G be a finite 4-primary group with disconnected prime
graph, and let G = G/F (G). Then, one of the following statements holds:

(1) G is a Frobenius group;
(2) G is a 2-Frobenius group;
(3) G is an almost simple triprimary group;
(4) G ∼= L2(2

m), where m ≥ 5, 2m − 1, and (2m + 1)/3 are primes;
(5) G ∼= L2(3

m) or PGL2(3
m), where m and (3m− 1)/2 are odd primes

and (3m + 1)/4 is either a prime or 112 (for m = 5);
(6) G ∼= L2(r) or PGL2(r), where r is a prime, 17 6= r ≥ 11, r2 − 1 =

2a3bsc, s > 3 is a prime, a, b ∈ N, and c is either 1 or 2 for r ∈ {97, 577};
(7) G ∼= A7, S7, A8, S8, A9, L2(16), L2(16) : 2, Aut(L2(16)), L2(25),

L2(25) : 2, L2(27) : 3, L2(49), L2(49) : 21, L2(49) : 23, L2(81), L2(81) : 2,
L2(81) : 4, L3(4), L3(4) : 21, L3(4) : 23, L3(5), Aut(L3(5)), L3(7), L3(7) : 2,
L3(8), L3(8) : 2, L3(8) : 3, Aut(L3(8)), L3(17), Aut(L3(17)), L4(3), L4(3) : 22,
L4(3) : 23, U3(4), U3(4) : 2, Aut(U3(4)), U3(5), U3(5) : 2, U3(7), Aut(U3(7)),
U3(8), U3(8) : 2, U3(8) : 31, U3(8) : 33, U3(8) : 6, U3(9), U3(9) : 2, Aut(U3(9)),
U4(3), U4(3) : 22, U4(3) : 23, U5(2), Aut(U5(2)), S4(4), S4(4) : 2, Aut(S4(4)),
S4(5), S4(7), S4(9), S4(9) : 21, S4(9) : 23, S6(2), G2(3), Aut(G2(3)), O+

8 (2),
3D4(2), Aut(3D4(2)), Sz(8), Sz(32), Aut(Sz(32)), 2F4(2)′, 2F4(2), M11,
M12, Aut(M12), or J2.
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The proof of Theorem 5 uses the description of finite simple 4-primary
groups obtained by Shi (Chinese Science Bull., 1991), Huppert and Lempken
(Proc. F. Scorina. Gomel State University. Problems in Algebra, 2000) and
Bugeaud, Cao and Mignotte (J. Algebra, 2001). Shi wrote Question 13.65 in
“The Kourovka Notebook”: is the number of finite simple tetraprimary groups
finite or infinite? However, Shi’s question is still open.

In the proofs of Theorems from (Trudy Trudy Inst. Mat. Mekh. UrO RAN,
2010, 2011; Sib. Electron. Mat. Izv., 2012), computations are carried out by
applying the computer system GAP. A program written in the language of
this system makes it possible to compute by the formula from Proposition 1
the dimension of the centralizer in the vector space of an element of prime
order from a finite simple group that acts irreducibly on this space.

As a corollary of Theorems 1–8 from (Trudy Trudy Inst. Mat. Mekh. UrO
RAN, 2011), the following result is obtained.

Theorem 6. A finite 4-primary simple group is recognizable by prime
graph if and only if it is isomorphic to one of the following groups: A8,
L3(4), and L2(q), where |π(q2 − 1)| = 3, q > 17, and either q = 3m and m
is an odd prime or q is a prime and q 6≡ 1 (mod 12) or q ∈ {97, 577}.
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Theorems 5 and 6 from (Trudy Trudy Inst. Mat. Mekh. UrO RAN, 2011)
that are concerned with 4-primary sporadic groups M11, M12, and J2 refine
essentially the corresponding Hagie’s results (Commun. Algebra, 2003).

Vasil’ev wrote Problem 16.26 in “The Kourovka Notebook” about the
finding the maximal number of pairwise nonisomorphic finite nonabelian
simple groups with the same prime graph. There is conjecture that this
number equals to 5 and is achieved on the groups J2, A9, C3(2), D4(2).
Theorem 6 from (Trudy Trudy Inst. Mat. Mekh. UrO RAN, 2011) shows
that the set {J2, A9, C3(2), D4(2)} is a maximal set of pairwise nonisomorphic
finite nonabelian simple groups with the same prime graph.
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AK and Khramtsov (Trudy Trudy Inst. Mat. Mekh. UrO RAN, 2012)
obtained the positive solution for all items of Problem 3 in the case when
Q = O2(G), G ∼= A7 and an element of order 5 from G acts on Q fixed points
freely. The following theorem is proved.

Theorem 7. Let G be a finite group with a nontrivial normal 2-subgroup
Q and G/Q ∼= A7. Suppose that an element of order 5 from G acts on Q
fixed points freely. Then the extension G over Q is split, Q is an elementary
abelian group and Q is the direct product of minimal normal subgroups each
of which as GF (2)G/Q-module is isomorphic to one of the two 4-dimensional
irreducible GF (2)A7-modules that are conjugated by outer automorphism of
the group A7.

In several recent works of AK, Khramtsov, Suprunenko, Kolpakova (2014-
2015), a description of chief factors of 4-primary groups with disconnected
prime graph was corrected and refined.
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B. Khosravi (2009) obtained a description of a group having the same
prime graph as the group Aut(S) for any sporadic simple group S except
for the group J2. He posed the problem: describe all groups G such that
Γ(G) = Γ(Aut(J2)). Note that if S is a sporadic simple group then |Aut(S) :
S| ≤ 2 and graphs Γ(S) and Γ(Aut(S)) are disconnected except for the
graphs Γ(Aut(J2)) and Γ(Aut(McL)). AK (Trudy Trudy Inst. Mat. Mekh.
UrO RAN, 2012) solved the Khosravi’s problem. The following theorem is
proved.

Theorem 8. Let G be a finite group, Γ(G) = Γ(Aut(J2)) and G =
G/O2(G). Then one of the following statements holds:

(1) G is soluble, 2-complement in G is a Frobenius group, whose core is a
7-group and complement B is a cyclic {3, 5}-group of order divisible on 15,
the factor-group G/O{2,7}(G) is isomorphic to a subgroup of order dividing
8|B| from Hol(C);

(2) G is soluble, 2-complement R in G is a Frobenius group of form A : B,
where A = F (R) is a biprimary {3, 5}-group, and B is a cyclic 7-group, the
factor-group O7′(G)/O2(G) has the normal 2-complement AO2(G)/O2(G),
and the factor-group G/O7′(G) is isomorphic to B or the dihedral group of
order 2|B|;

(3) G is soluble, 2-complement R in G is a 2-Frobenius group of form
A : B : C, where A = F (R) is a {3, 5}-group of order divisible on 5, B is a
cyclic 7-group, and |C| = 3, the factor-group O7′(G)/O2(G) has the normal
2-complement AO2(G)/O2(G), and the factor-group G/O7′(G) is isomorphic
to a Frobenius group of order 3|B| or 6|B|;

(4) G is isomorphic to one of the groups A8, S8, A9, S9, S6(2), O+
8 (2),

O+
8 (2) : 2, J2 or Aut(J2);
(5) G is isomorphic to an extension of a nontrivial nilpotent {3, 5}-group

A by a group B such that F ∗(B) = O2(B) × L, where the group L is
isomorphic to A7, the group B/O2(B) is isomorphic to A7 or S7, the group L
induces (by conjugation) on any p-chief factor of the group G∞ the irreducible
6-dimensional GF (p)A7-module for p ∈ {3, 5};

(6) G is isomorphic to an extension of a nilpotent {3, 5}-group A of order
divisible on 5 by a group B such that F ∗(B) = O2(B)× L, where the group
L is isomorphic to U3(3), the group B/O2(B) is isomorphic to U3(3) or
G2(2), the group L induces on any 3-chief factor of the group G∞ the natural
unitary 3-dimensional GF (9)U3(3)-module or the irreducible 6-dimensional
GF (9)U3(3)-module, and on any its 5-chief factor the absolutely irreducible
6-dimensional GF (5)U3(3)-module;
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(7) G is isomorphic to an extension of a nilpotent {3, 5}-group A of order
divisible on 5 by a group B such that F ∗(B) = O2(B)× L, where the group
L is isomorphic to L2(7), the group B/O2(B) is isomorphic to L2(7) or
PGL2(7), the group L induces on any p-chief factor of the group G∞ the
irreducible 3-dimensional GF (p2)L2(7)-module or the absolutely irreducible
6-dimensional GF (p)L2(7)-module for p ∈ {3, 5};

(8) G is isomorphic to a semidirect product of a nontrivial abelian 3-
group A on a group B such that F ∗(B) = O2(B) ◦ L, where the group L
is isomorphic to 2.L3(4) or 2.U4(3), the group B/F ∗(B) is isomorphic to
a subgroup from D8, the involution from Z(L) inverts A, and the group
L induces on any 3-chief factor of the group AL the faithful irreducible 6-
dimensional GF (3)L-module;

(9) G is isomorphic to a semidirect product of a nontrivial abelian 3-
group A on a group B such that F ∗(B) = O2(B) ◦ L, where the group L
is isomorphic to 22

.
L3(4), the group B/F ∗(B) is isomorphic to a subgroup

from 22, Z(L) is generated by some involutions z1 and z2 such that A =
CA(z1)×CA(z2), and the group L induces on any 3-chief factor of the group
AL the faithful irreducible 6-dimensional GF (3)2.L3(4)-module;

(10) G is isomorphic to a semidirect product of a abelian {3, 5}-group A
on a group B such that F ∗(B) = O2(B)◦L, where the group L is isomorphic
to 2.J2, the group B/O2(B) is isomorphic to J2 or Aut(J2), the involution
from Z(L) inverts A, and the group L induces on any 3-chief factor of the
group AL the faithful irreducible 6-dimensional GF (9)L-module and on any
its 5-chief factor the faithful irreducible 6-dimensional GF (5)L-module;

(11) G is isomorphic to an extension of a nilpotent {3, 5}-group A of
order divisible on 5 by a group B such that F ∗(B) = O2(B) ◦ L, where the
group L is isomorphic to SL2(7), the group B/O2(B) is isomorphic to L2(7)
or PGL2(7), and the group L induces on any p-chief factor of the group G∞

for p ∈ {3, 5} either a unfaithful irreducible L-module with the core of order
2 (see item (7)), or the faithful irreducible 6-dimensional GF (p2)L-module.

Each from items (1)–(11) of the theorem is realised.

As a corrolary of Theorem 8, we obtain

Corollary. A finite group G such that |G| = |Aut(J2)| and Γ(G) =
Γ(Aut(J2)) is isomorphic to Aut(J2), 2× J2 or 2.J2.
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The group A10 is exceptional in many senses. It is the only group with
connected prime graph among all finite simple groups from "Atlas of finite
groups" and also among all 4-primary simple groups. The non-recognizability
by spectrum of the groupA10 is established by Mazurov yet in 1998. Staroletov
(2008, 2010) determined the structure of the group G such that ω(G) =
ω(A10) and in particular proved its unsolvability. Moghaddamfar (2010) proved
that the group A10 is recognizable by its prime graph and order. Extending
these results, AK (Trudy Trudy Inst. Mat. Mekh. UrO RAN, 2013) described
all finite group with the same prime graph as the group A10. The following
theorem is proved.

Theorem 9. Let G be a finite group, Γ(G) = Γ(A10 and G = G/O3(G).
Then one of the following statements holds:

(1) G is soluble, 3-complement R in G is a Frobenius group, whose core is
a non-cyclic 7-group and complement B is a biprimary group of form C : D,
where C is a cyclic 5-group and D is a cyclic or (generalized) quaternion
2-group, the factor-group G/O(G) is isomorphic to D, SL2(3), or Q8.S3;

(2) G is soluble, 3-complement R in G is a Frobenius group of form A : B,
where A = F (R) is a biprimary {2, 5}-group and B is a cyclic 7-group, the
factor-group O7′(G)/O3(G) has the normal 3-complement AO3(G)/O3(G),
and the factor-group G/O7′(G) is isomorphic to B or a Frobenius group of
order 3|B|;

(3) G is soluble, 3-complement R in G is a 2-Frobenius group of form
A : B : C, where A = F (R) is a {2, 5}-group of order divisible on 5, B is a
cyclic 7-group, and |C| = 2, the factor-group O7′(G)/O3(G) has the normal
2-complement AO3(G)/O3(G), and the factor-group G/O7′(G) is isomorphic
to a Frobenius group of order 2|B| or 6|B|;

(4) G is isomorphic to a semidirect product of a nontrivial abelian 7-
group A on a group B such that F ∗(B) = O3(B)× L, where the group L is
isomorphic to SL2(q) for q ∈ {5, 9}, the group B/O3(B) is isomorphic to
L2(q) or PGL2(q), and any 7-chief factor of the group AL as L−module is
isomorphic for q = 5 to the faithful irreducible 2-dimensional GF (49)SL2(5)-
module or the faithful irreducible 4-dimensional GF (7)SL2(5)-module, and
for q = 9 to one of two quasiequivalent faithful irreducible 4-dimensional
GF (7)SL2(9)-modules;

(5) G is isomorphic to one of the groups S7, S8, A9, A10, PGL2(49),
L3(4) : 23, L3(4).3.23, U3(5), U3(5) : 2, U3(5) : 3, U3(5) : S3, S6(2), O+

8 (2),
O+

8 (2) : 3, or J2;
(6) G is isomorphic to an extension of a nilpotent {3, 5}-group A of order
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divisible on 5 by a group B such that F ∗(B) = O3(B)× L, where the group
L is isomorphic to L2(7), the group B/O3(B) is isomorphic to L2(7) or
PGL2(7), any 2-chief factor of the group G∞ as L-module is isomorphic to
one of two quasiequivalent irreducible 3-dimensional GF (3)L2(7)-modules,
and any 5-chief factor of the group G∞ as L-module is isomorphic either
to the irreducible 3-dimensional GF (25)L2(7)-module or to the absolutely
irreducible 6-dimensional GF (5)L2(7)-module;

(7) G is isomorphic to an extension of a nontrivial nilpotent {2, 5}-group
A by a group B such that F ∗(B) = O3(B) × L, where the group L is
isomorphic to A7 or U3(3), |B : F ∗(B)| ≤ 2, and any p-chief factor of
the group G

∞ as L-module is isomorphic to the irreducible 6-dimensional
GF (p)L-module for p ∈ {2, 5};

(8) G is isomorphic to an extension of a nontrivial nilpotent {2, 5}-group
A by a group B such that F ∗(B) = O3(B) ◦ L, where L ∼= 3.A7, the group
B/O3(B) is isomorphic to L or Aut(L), any p-chief factor of the group
G
∞ as L-module for for p ∈ {2, 5} is isomorphic either to the faithful

irreducible 6-dimensional GF (p2)L-module or to the unfaithful irreducible
6-dimensional GF (p)L-module with the core of order 3 (see the item (6));

(9) G is isomorphic to an extension of a nontrivial 5-group A by a group
B such that F ∗(B) = O3(B) ◦ L, where L ∼= SU3(5), the group B/O3(B)
is isomorphic to a subgroup from Aut(L), any 5-chief factor of the group
G
∞ as L-module is isomorphic to the faithful irreducible 3-dimensional or

6-dimensional GF (25)L-module;
(10) G is isomorphic to an extension of a nontrivial 2-group A by a group

B such that F ∗(B) = O3(B) ◦ L, where the group L is isomorphic to A8,
S6(2), 3.U4(3) or J2, the group B/O3(B) is isomorphic to a subgroup from
S8, S6(2), U4(3).22/3 or J2, respectively, any 2-chief factor of the group G∞

as L-module is isomorphic to the faithful irreducible 6-dimensional L-module
over the field GF (2) for the first and second cases and over the field GF (4)
for the remaining cases;

(11) G is isomorphic to an extension of a nontrivial 2-group A by a
group B such that F ∗(B) = O3(B) ◦ L, where the group L is isomorphic
to L3(4) or SL3(4), the group B/O3(B) is isomorphic to a subgroup from
L3(4).6 or L3(4).3.23, respectively, any 2-chief factor of the group G

∞ as
L-module is isomorphic either to the natural 3-dimensional GF (4)SL3(4)-
module or to one of two quasiequivalent unfaithful irreducible 9-dimensional
GF (2)SL3(4)-modules with the core of order 3.

Each from items (1)–(11) of the theorem is realised.
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Since the different prime graphs Γ(Aut(J2)) and Γ(A10) are isomorphic as
abstract graphs, the arguments in the proofs of Theorems 8 and 9 are similar.
It is interesting that Γ(Aut(J2)) = Γ(2 × J2) and Γ(A10) = Γ(3 × J2). The
graph Γ(Aut(J2)) has the form
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The graph Γ(A10) has the form
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Recently AK (Sib. Electron. Mat. Izv., 2014) continued these investigations
with the purpose of the study of finite 5-primary groups with disconnected
prime graph. It was made a necessary preliminary step for this by the determining
the finite almost simple 5-primary groups and their prime graphs. In addition,
lists of finite simple 5-primary groups obtained by Jafarzadeh and Iranmanesh
(London Math. Soc. Lecture Note Ser., 2007) and Zhang, Shi, Lv, Yu, Chen
(to appear) are essentially refined. In particular, the following theorem is
proved (it is provided in corrected and refined form).
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Theorem 10. A finite almost simple group G with the socle P is 5-
primary if and only if one of the following statements holds:

(1) P is isomorphic to one of the groups A11, A12, L2(q) for
q ∈ {26, 28, 29, 53, 54, 73, 74, 112, 172, 192}, L3(9), L3(27), L4(q) for q ∈ {4, 5, 7},
L5(2), L5(3), L6(2), U3(q) for q ∈ {16, 17, 25, 81}, U4(q) for q ∈ {4, 5, 7, 9},
U5(3), U6(2), S4(q) for q ∈ {8, 16, 17, 25, 49}, S6(3), S8(2), O7(3), O+

8 (3),
O−8 (2), G2(q) for q ∈ {4, 5, 7, 8}, M22, J3, HS, He or M cL;

(2) G ∼= L2(2
p), where p ≥ 11 is a prime and |π(22p − 1)| = 4;

(3) G ∼= Aut(L2(2
p)), where p ≥ 7, 2p − 1 and (2p + 1)/3 are some

different primes;
(4) G ∼= Aut(L2(3

p)) or O2(Aut(L2(3
p))), where p ≥ 5 is a prime and

|π((3p − 1)/2)| = |π((3p + 1)/4)| = 1;
(5) G ∼= L2(p) or PGL2(p), where p ≥ 29 is a prime and |π(p2−1)| = 4;
(6) G ∼= L2(p

r) or PGL2(p
r), where p ∈ {3, 5, 7, 17}, r is a prime,

3 < r 6= p and |π(p2r − 1)| = 4;
(7) U3(2

p) ≤ G ≤ PGU3(2
p) : 2, where p ≥ 5 and 2p − 1 are primes,

|π((2p + 1)/3)| = |π((22p − 2p + 1)/3)| = 1;
(8) P ∼= Lε3(p), where ε ∈ {+,−}, p is a prime, 17 6= p ≥ 11, |π(p2−1)| =

3, and |π(p
2+εp+1
(3,p−ε1) )| = 1;

(9) G ∼= S4(p) or PGSp4(p), where p ≥ 11 is a prime, |π(p2 − 1)| = 3
and p2 + 1 = 2r or 2r2 for an odd prime r;

(10) G ∼= Sz(2p), where p ≥ 7 and 2p−1 are primes and |π(22p+1)| = 3;
(11) G ∼= Aut(Sz(8)).

Theorem 10 shows that finite simple 5-primary groups besides the groups
L4(q) for q ∈ {4, 7} and U4(q) for q ∈ {4, 5, 7, 9} have disconnected prime
graph.
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Using Theorems 3 and 5, AK and his post-graduate Kolpakova (Zh. Fund.
Prikl. Mat., 2015, to appear) described the chief factors of the commutator
subgroups of finite nonsolvable groups G with disconnected Gruenberg-Kegel
graph having exactly 5 vertices in the case when G/F (G) is an almost simple
n-primary group for n ≤ 4.

Recently AK and Kolpakova (2015, to appear) determine the finite almost
simple 6-primary groups and their prime graphs. By this, a list of finite simple
6-primary groups obtained by Jafarzadeh and Iranmanesh (London Math.
Soc. Lecture Note Ser., 2007) is essentially refined.

Theorem 11. A finite almost simple group G with the socle P is 6-
primary if and only if one of the following statements holds:

(1) P is isomorphic to one of the groups
An for n ∈ {13, 14, 15, 16}, L2(q) for q ∈ {210, 216, 36, 38, 310, 55, 114, 173, 174},

L3(q) for q ∈ {24, 27, 29, 52, 72}, L4(q) for q ∈ {23, 32, 17}, L5(7), L6(3),
L7(2), U3(q) for q ∈ {29, 33, 53, 54, 72, 73, 172}, U4(q) for q ∈ {23, 24, 52},
U5(q) for q ∈ {4, 5, 9}, U6(3), U7(2), O7(q) for q ∈ {5, 7}, O9(3), PSp4(q)
for q ∈ {25, 33, 34, 35, 112, 172}, PSp6(q) for q ∈ {4, 5, 7}, PSp8(3), O+

8 (q)
for q ∈ {4, 5, 7}, O−8 (3), O+

10(2), O−10(2), 3D4(q) for q ∈ {4, 5}, G2(q) for
q ∈ {32, 17}, 2G2(3

3), F4(2), Suz, Ru, Co2, Co3, M23, M24, J1, Fi22, HN ;
(2) G ∼= Aut(L2(2

r)), where r ≥ 11 is a prime, r /∈ π(P ) and |π(22r −
1)| = 4;

(3) G ∼= L2(2
r), where r ≥ 37 is a prime, r /∈ π(P ) и |π(22r − 1)| = 5;

(4) G ∼= L2(2
2r) or Or(Aut(L2(2

2r))), where r ≥ 7 и 2r − 1 are odd
primes, r /∈ π(G), |π(2

r+1
3 )| = 1 and |π(22r + 1)| = 2;

(5) G ∼= L2(2
r2), where r ≥ 7 is a prime, r /∈ π(G), |π(2r

2 − 1)| = 2 and
|π(2r

2

+ 1)| = |π(22r − 1)| = 3;
(6) P ∼= L2(3

2r) and G ≤ Or(Aut(P )), where r > 13 is a prime, r /∈
π(P ), |π(3

r−1
2 )| = |π(3

r+1
4 )| = 1 and |π(3

2r+1
2 )| = 2;

(7) P ∼= L2(3
r2) or Or(Aut(P )), where r is a prime, r /∈ π(P ), |π(3

r+1
4 )| =

|π(3
r−1
2 )| = 1 and |π(32r

2 − 1)| = 5;
(8) P ∼= L2(p), where p ≥ 131 is a prime and |π(p2 − 1)| = 5;
(9) P ∼= L2(p

2), where p ≥ 29 is a prime, |π(p2−1)| = 4 and |π(p2+1)| =
2;

(10) P ∼= L2(p
2), where p ≥ 13 is a prime and |π(p2−1)| = |π(p2 +1)| =

3;
(11) G ∼= L2(p

r) : r or Aut(L2(p
r)), where p ∈ {3, 5, 7, 17} and r are

primes, r 6∈ π(P ), pr ≡ ε1 (mod 4) for ε ∈ {+, −}, |π(pr − ε1)| = 2 and
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|π(p
r+ε1
2 )| = 2;

(12) G ∼= L2(p
r) or PGL2(p

r))), where p and r are odd primes, r 6∈ π(P )
and |π(p2r − 1)| = 5;

(13) P ∼= Lε3(2
r) and G ≤ Or(Aut(P )), where ε ∈ {+, −}, r and 2r − 1

are primes, r ≥ 5 for ε = + and r ≥ 19 for ε = −, r /∈ π(P ), |π(2
r+1
3 )| = 1

and |π(2
2r+ε2r+1
(3, 2r−ε1) )| = 2;

(14) G ∼= Lε3(3
r) or Lε3(3r) : 2, where ε ∈ {+, −}, r is a prime, r ≥ 7

for ε = + and r ≥ 5 for ε = −, r /∈ π(P ), |π(3
r−1
2 )| = |π(3

r+1
4 )| = 1 and

|π(32r + ε3r + 1)| = 2;
(15) P ∼= Lε3(p), where p ≥ 41 is a prime, ε ∈ {+, −}, |π(p2 − 1)| = 4 и

|π(p
2+εp+1
(3, p−ε1))| = 1;
(16) P ∼= Lε3(p), where p is a prime, ε ∈ {+, −}, p ≥ 11 for ε = + and

p ≥ 31 for ε = −, |π(p2 − 1)| = 3 and |π(p
2+εp+1
(3, p−ε1))| = 2;

(17) P ∼= U3(2
r) and P : r ≤ G, where r ≥ 5 and 2r − 1 are primes,

r /∈ π(G) and |π(2
r+1
3 )| = |π(2

2r−2r+1
3 )| = 1;

(18) P ∼= Lε4(p), where ε ∈ {+, −}, p is a prime, p ≥ 19 for ε = + and
p ≥ 11 for ε = −, |π(p2 − 1)| = 3 and |π(p

2+εp+1
(3, p−ε1))| = |π(p

2+1
2 )| = 1;

(19) G ∼= PSp4(2
r), where r > 5 and 2r − 1 are primes, r /∈ π(G),

|π(2
r+1
3 )| = 1 and |π(22r + 1)| = 2;

(20) G ∼= PSp4(3
r) или PGp4(3

r), where r > 5 is a prime, r /∈ π(G),
|π(3

r−1
2 )| = |π(3

r+1
4 )| = 1 and |π(32r + 1)| = 3;

(21) P ∼= PSp4(p), where p ≥ 29 is a prime, |π(p2 − 1)| = 4 and
|π(p

2+1
2 )| = 1;

(22) P ∼= PSp4(p), where p ≥ 13 is a prime, |π(p2 − 1)| = 3 and
|π(p

2+1
2 )| = 2;

(23) G ∼= G2(p), where p ≥ 13 is a prime, |π(p2−1)| = 3 and |π(p
2+εp+1
(3,p−ε1) )| =

1 for ε ∈ {+,−};
(24) G ∼= Sz(2r), where r ≥ 13 is a prime, r /∈ π(P ), |π(2r − 1)| = 1

and |π(22r + 1)| = 4;
(25) G ∼= Sz(2r), where r ≥ 11 is a prime, r /∈ π(P ), |π(2r − 1)| = 2

and |π(22r + 1)| = 3;
(26) G ∼= Aut(Sz(2r)), where r ≥ 7 and 2r − 1 are primes and |π(22r +

1)| = 3.
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By Jafarzadeh and Iranmanesh (London Math. Soc. Lecture Note Ser.,
2007), the following Problem 3.12 was posed: For which power primes q does
q2 − 1 have at most five different prime divisors?

The case of this problem when |π(q2 − 1)| ≤ 2 is very known (see,
for example, the paper by G. Higman (J. London Math. Soc., 1957) or
the paper by Herzog (J. Algebra, 1968)): |π(q2 − 1)| ≤ 2 if and only if
q ∈ {2, 3, 4, 5, 7, 8, 9, 17}.

The cases when the number |π(q2 − 1)| is equal to 3, 4, 5 considered
by AK and Khramtsov (Trudy Trudy Inst. Mat. Mekh. UrO RAN, 2010),
AK and Khramtsov (Trudy Trudy Inst. Mat. Mekh. UrO RAN, 2011), AK
(Sib. Electron. Mat. Izv., 2014) and Kolpakova and AK (2015, to appear),
respectively. Therefore, a classification of power primes q such that |π(q2 −
1)| ≤ 5 is obtained. A further refinement of the classification brings often to
some Diophantine equations whose solving is difficult even for the modern
number theory. For example, the question on the finiteness of the set of prime
powers q such that |π(q2 − 1)| = 3 is equivalent to the open Shi’s Question
13.65 from “The Kourovka Notebook”.
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We consider an other very interesting for us Diophantine equation.
Nagell (1920) and Ljunggren (1943) studied equation of the form

(xn − 1)/(x− 1) = ym.

in integers x, y,m > 1, n > 2.
Later on the equation is investigated by many number theorists with

using contemporary methods of Diophantine approximation. There exists the
conjecture that the set of solutions (x, y, n,m) of this equation is finite and,
it is possible, is exhausted by quadruples (3, 11, 5, 2), (7, 20, 4, 2), (18, 7, 3, 3).

Most strong results in the solving this equation are obtained in works of
Bugeaud, Mignotte, Roy, Shorey (Math. Proc. Cambridge Philos. Soc, 1999),
Bugeaud и Mignotte (Pacific J. Math., 2000), Benett (J. reine Angew. Math.,
2001): the equation has no solutions if x is a square; has unique solution
(x, y, n,m) = (3, 11, 5, 2) if n ≡ 1 (mod m); if (x, y, n,m) 6= (18, 7, 3, 3) and
m is a prime then there exists a prime divisor p of x such that m divides
p− 1.
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Lucido (Boll. Unione Mat. Ital., 2002) described finite simple groups G
such that the connected components of the graph Γ(G) are trees, i. e. connected
graphs without cycles. Furthermore, in this paper Lucido described the structure
of a finite group whose the prime graph is a tree. My PhD student O.A.
Alekseeva and myself consider more general problem of the description of
the structure of a finite group whose the prime graph contains no triangles
(3-cycles).
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It is easy to see that if G is a finite group whose prime graph contains no
triangles then its quotient G/S(G) by the solvable radical S(G) is almost
simple.

In the case, when the investigated group is almost simple, we obtained
the following result.

Theorem 12. Let G be a finite almost simple group with the socle P . If
the graph Γ(G) contains no triangles then one of the following statements
holds:

(1) P is isomorphic to one of the groups An для n ∈ {5, 6, 7}, L2(q)
for q ∈ {7, 23, 34, 11, 13, 17, 52, 72, 29}, L3(q) for q ∈ {3, 4, 5, 17}, U3(q) for
q ∈ {3, 7}, L4(3), U4(q) for q ∈ {2, 3}, G2(3), 2F4(2)′, M11, M22;

(2) G is isomorphic to one of the groups A8, L2(q) for q ∈ {24, 26}, L3(q)
for q ∈ {7, 8, 9}, L3(7) : 2, L3(9) : 2, U3(q) for q ∈ {4, 5, 8}, U3(5) : 2,
U3(8) : 3, U5(2), 2G2(27);

(3) P ∼= L2(q) for q ∈ {53, 172} and PGL2(q) 6≤ G;
(4) P ∼= L2(q), where q ∈ {2p, 3p}, p is an odd prime and |π(q − 1)| ≤

2 ≥ |π(q + 1)|;
(5) G ∼= L2(p), where p > 17 is a prime and |π(p− 1)| ≤ 2 ≥ |π(p+ 1)|;
(6) G ∼= PGL2(p), where 17 < p 6= 2n±1 is a prime and |π(p2−1)| = 3;
(7) G ∼= L2(q), where q = pr, p ∈ {3, 5, 7, 17}, r is a prime, r does not

divide |G|, q ≡ ε1 (mod 4) for ε ∈ {+,−}, |π(q−ε1)| = π((q+ε1)/2)| = 2;
(8) G ∼= U3(q), where q = 2p, p ≥ 5, q − 1 and (q + 1)/3 are primes,

|π((q2 − q + 1)/3)| = 1 and p does not divide |G|;
(9) P ∼= Lε3(p), where ε ∈ {+,−}, 11 ≤ p 6= 2n±1 is a prime, (p−ε1)3 =

3, |π(p2 − 1)| = 3 and |π((p2 + εp+ 1)/3)| = 1;
(10) P ∼= Sz(2f), where either f = 9, or f is an odd prime andmax{|π(q−

1)|, |π(q −
√

2q + 1)|, |π(q +
√

2q + 1)|} ≤ 2;
(11) G ∼= 2G2(q), where q = 3p, p ≥ 5 is a prime, |π((q − 1)/2)| =

|π((q + 1)/4)| = 1 and |π(q −
√

3q + 1)| ≤ 2 ≥ |π(q +
√

3q + 1)|.
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Theorem 12 implies

Corollary. Let G be a finite almost simple group and the graph Γ(G)
contains no triangles. Then

(1) each connected component of the graph Γ(G) is a tree;
(2) if G is simple then the graph Γ(G) is disconnected;
(3) |π(G)| ≤ 8 and |π(G)| = 8 for G ∼= Aut(Sz(29)).

Note that Theorem 12 refines essentially an obtained by Lucido list of
finite simple groups G such that the connected components of the graph
Γ(G) are trees. The proof of Theorem 12 uses the above-mentioned results
on finite almost simple n-primary groups with n ≤ 6.
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In the case, when the investigated group is solvable, we obtained the
following result.

Theorem 13. Let G be a finite solvable group and the graph Γ(G) contains
no triangles. Then the following statements hold:

(1) If the graph Γ(G) is disconnected then G is a Frobenius group or a
2-Frobenius group and the graph Γ(G) has exactly two connected components
which are 1- or 2-chains.

(2) If the graph Γ(G) is connected then the graph Γ(G) is one of the
following: n-chain for 1 ≤ n ≤ 4, 4-cycle, 5-cycle.

(3) If the graph Γ(G) is 2-chain then the Fitting length lF (G) of G can
be arbitrarily large.

(4) If the graph Γ(G) is 3-chain then lF (G) ≤ 6.
(5) If the graph Γ(G) is 4-chain then lF (G) ≤ 4.
(6) If the graph Γ(G) is 4-cycle then lF (G) ≤ 5.
(7) If the graph Γ(G) is 5-cycle then lF (G) = 3.
Moreover, for any isomorphic type of the graph Γ(G), besides of 2-chain

and 5-cycle, the maximum of the number lF (G) is achieved on a group G
such that the factor group G/O(G) is isomorphic to the group 2.S−4 .

The items (1) and (2) of Theorem 13 are proved also in the work by
Gruber, Keller, Lewis, Naughton and Strasser (J. Algebra, to appear). But
their proof uses the classification of prime graphs of finite solvable groups
and some combinatorial results. Our proof is direct, very short and uses no
deep combinatorial results.

There exists a solvable group G of shape (72 × 132) h 2.S−4 for which the
graph Γ(G) is 4-chain and lF (G) = 4.

There exists a solvable group G of shape (52× 13)h (2×F21), where F21

is the Frobenius group of order 21, for which the graph Γ(G) is 5-cycle and
lF (G) = 3.

But in the cases (4) and (6), the corresponding examples do not constructed.
In the general case of nonsolvable groups, using Theorems 12 and 13, we

obtained the following result.

Theorem 14. If G is a finite non-solvable group and the graph Γ(G)
contains no triangles then |π(G)| ≤ 8 and |π(S(G))| ≤ 3.

Moreover, for the proof of Theorem 14, we obtain a detail description
of the structure of groups G from Theorem 14 in the case when π(S(G))
contains a number which does not divide the order of the group G/S(G) (if
|π(S(G))| = 3 then this condition is true).
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The problem of the realizability of an abstract finite graph as the prime
graph of a finite group is interesting also for us. There are not many works
devoted to the problem. In unpublished Bachelor work of I.N. Zharkov (2008),
who was a student of V.D. Mazurov, it was proved that a chain is realizable
as the prime graph of a group if and only if its length is at most 4.

In the above-mentioned work by Gruber, Keller, Lewis, Naughton and
Strasser, the graphs which may be realized as the prime graphs of finite
solvable groups are precisely determined.

The analogous problem were considered by H.P. Tong-Viet (J. Algebra,
2013) for the graph ∆(G) whose vertex set is the set all primes dividing
irreducible character degrees of a finite group G and two vertices p and q
are adjacent if and only if the product pq divides some irreducible character
degree of G.

Of course, in general, the problem has negative solution. For example,
Gruenberg—Kegel theorem and the description of connected components of
the prime graph for all finite simple non-abelian groups imply that the graph
consisting of five pairwise non-adajcent vertices (5-coclique) is not realizable
as the prime graph of a finite group. But in the paper of A.L. Gavrilyuk,
I.V. Khramtsov, AK and N.V. Maslova (Sib. Electron. Mat. Izv., 2014) it
was shown that any graph with at most five vertices, besides of 5-coclique,
is realizable as the prime graph of a finite group.

37



Recently N. V. Maslova (2015) gave a solution of the mentioned problem
for all complete bipartite graphs Km,n, where Km,n is the graph with m+ n
vertices whose vertices can be divided into two disjoint subsets U and V such
that |U | = m, |V | = n and vertices are adjacent if and only if they belong
to different subsets. Shi proved the following theorem.

Theorem 15. Let Γ be a complete bipartite graph Km,n, where m ≤ n.
Then the following statements hold:

(1) Γ is realizable as the Gruenberg–Kegel graph of a group if and only if
m+ n ≤ 6 and (m,n) 6= (3, 3);

(2) if m+n ≤ 6 and (m,n) 6= (3, 3), (1, 5) then there exist infinitely many
sets T of primes such that Γ is realizable as the Gruenberg–Kegel graph of a
group G and T = π(G);

(3) if (m,n) = (1, 5) and Γ is realizable as the Gruenberg–Kegel graph
of a group G then π(G) = {2, 3, 7, 13, 19, 37}, O2(G) 6= 1 and G/O2(G) ∼=
2G2(27).
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