t-Walk-regular graphs, scheme graphs and 2-partially metric association schemes

Jack Koolen

This is based on joint work with M. Cámara, E.R. van Dam and J. Park, and with Zhi Qiao and Shao Fei Du

School of Mathematical Sciences, University of Science and Technology of China

Yekaterinburg, August, 2015
Outline

1. *t*-Walk-regular graphs
 - Definitions
 - Examples
 - Partially distance-regular graphs

2. Some results
 - Adjacency algebra
 - Terwilliger

3. Examples with relatively many eigenvalues
 - A result of C. Dalfó et al.
 - Graphs from group divisible designs

4. Association schemes
 - Definitions
 - Examples

5. Multiplicity results
 - Multiplicity 3
 - Problems
Let $\Gamma = (V, E)$ be a graph.

The distance $d(x, y)$ between two vertices x and y is the length of a shortest path connecting them.

The maximum distance between two vertices in Γ is the diameter $D = D(\Gamma)$.

The valency of x is the number of vertices adjacent to it.

A graph is regular with valency k if each vertex has k neighbors.
Definitions

- Let $\Gamma = (V, E)$ be a graph.
- The distance $d(x, y)$ between two vertices x and y is the length of a shortest path connecting them.
- The maximum distance between two vertices in Γ is the diameter $D = D(\Gamma)$.
- The valency of x is the number of vertices adjacent to it.
- A graph is regular with valency k if each vertex has k neighbors.
- The adjacency matrix A of Γ is the matrix whose rows and columns are indexed by the vertices of Γ and the (x, y)-entry is 1 whenever x and y are adjacent and 0 otherwise.
- The eigenvalues of the graph Γ are the eigenvalues of A.
A graph Γ is called t-walk-regular if the number of walks of length ℓ between vertices x and y only depends on the distance between x and y and ℓ, provided that such a distance does not exceed t.
A graph Γ is called \textit{t-walk-regular} if the number of walks of length ℓ between vertices x and y only depends on the distance between x and y and ℓ, provided that such a distance does not exceed t.

\textit{t-Walk-regular} graphs are generalizations of distance-regular graphs. Many results on distance-regular graphs can be extended to the class of 2-walk-regular graphs, especially those results that uses Euclidean representations.
Outline

1. t-Walk-regular graphs
 - Definitions
 - Examples
 - Partially distance-regular graphs

2. Some results
 - Adjacency algebra
 - Terwilliger

3. Examples with relatively many eigenvalues
 - A result of C. Dalfó et al.
 - Graphs from group divisible designs

4. Association schemes
 - Definitions
 - Examples

5. Multiplicity results
 - Multiplicity 3
 - Problems
Examples 1

There are many examples of m-walk-regular graphs that are not distance-regular.

- The bipartite double of the dodecahedron is 3-walk-regular but not 4-walk-regular. (Bipartite double: For every vertex x create two vertices x^+ and x^- and if $x \sim y$ then $x^\epsilon \sim y^\delta$ if $\epsilon \delta = -$.)

For example all 1-arc-transitive cubic graphs are 2-walk-regular. Any cubic graph is at most 5-arc-transitive (Tutte) and there are infinitely many connected non-isomorphic cubic 5-arc-transitive graphs.

Any k-regular graph is at most 7-arc-transitive (Weiss) and there are infinitely many connected non-isomorphic 7-arc-transitive 4-regular graphs (Conder and Walker(1998)).
Examples 1

There are many examples of m-walk-regular graphs that are not distance-regular.

- The bipartite double of the dodecahedron is 3-walk-regular but not 4-walk-regular. (Bipartite double: For every vertex x create two vertices x^+ and x^- and if $x \sim y$ then $x^\epsilon \sim y^\delta$ if $\epsilon \delta = -$.)

- m-Arc transitive graphs are at least m-walk-regular. (m-Arc-transitive graphs have an automorphism group transitive on the m-arcs, i.e. $(m+1)$-tuples (x_0, x_1, \ldots, x_m) such that $x_i \sim x_{i+1}$ and $x_{i-1} \neq x_{i+1}$)
Examples 1

There are many examples of m-walk-regular graphs that are not distance-regular.

- The bipartite double of the dodecahedron is 3-walk-regular but not 4-walk-regular. (Bipartite double: For every vertex x create two vertices x^+ and x^- and if $x \sim y$ then $x^\epsilon \sim y^\delta$ if $\epsilon\delta = -$.)

- m-Arc transitive graphs are at least m-walk-regular. (m-Arc-transitive graphs have an automorphism group transitive on the m-arcs, i.e. $(m+1)$-tuples (x_0, x_1, \ldots, x_m) such that $x_i \sim x_{i+1}$ and $x_{i-1} \neq x_{i+1}$)

- But there are t-arc-transitive graphs which are $t+1$-walk-regular. For example all 1-arc-transitive cubic graphs are 2-walk-regular.
Examples 1

There are many examples of m-walk-regular graphs that are not distance-regular.

- The bipartite double of the dodecahedron is 3-walk-regular but not 4-walk-regular. (Bipartite double: For every vertex x create two vertices x^+ and x^- and if $x \sim y$ then $x^\epsilon \sim y^\delta$ if $\epsilon\delta = -$.)

- m-Arc transitive graphs are at least m-walk-regular.
 (m-Arc-transitive graphs have an automorphism group transitive on the m-arcs, i.e. $(m+1)$-tuples (x_0, x_1, \ldots, x_m) such that $x_i \sim x_{i+1}$ and $x_{i-1} \neq x_{i+1}$)

- But there are t-arc-transitive graphs which are $t + 1$-walk-regular. For example all 1-arc-transitive cubic graphs are 2-walk-regular.

- Any cubic graph is at most 5-arc-transitive (Tutte) and there are infinitely many connected non-isomorphic cubic 5-arc-transitive graphs.
There are many examples of m-walk-regular graphs that are not distance-regular.

- The bipartite double of the dodecahedron is 3-walk-regular but not 4-walk-regular. (Bipartite double: For every vertex x create two vertices x^+ and x^- and if $x \sim y$ then $x^\epsilon \sim y^\delta$ if $\epsilon\delta = -$.)

- m-Arc transitive graphs are at least m-walk-regular. (m-Arc-transitive graphs have an automorphism group transitive on the m-arcs, i.e. $(m+1)$-tuples (x_0, x_1, \ldots, x_m) such that $x_i \sim x_{i+1}$ and $x_{i-1} \neq x_{i+1}$)

- But there are t-arc-transitive graphs which are $t+1$-walk-regular. For example all 1-arc-transitive cubic graphs are 2-walk-regular.

- Any cubic graph is at most 5-arc-transitive (Tutte) and there are infinitely many connected non-isomorphic cubic 5-arc-transitive graphs.

- Any k-regular graph is at most 7-arc-transitive (Weiss) and there are infinitely many connected non-isomorphic 7-arc-transitive 4-regular graphs (Conder and Walker(1998))
Examples 2

Two generalizations of m-arc-transitive graphs:

- Partially m-distance-transitive graphs: Connected graph with diameter at least m such that for any quadruple of vertices x_1, x_2, y_1, y_2 with $d(x_1, x_2) = d(y_1, y_2) \leq m$ there is an automorphism τ such that $x_i^\tau = y_i$ ($i = 1, 2$).
Two generalizations of m-arc-transitive graphs:

- Partially m-distance-transitive graphs: Connected graph with diameter at least m such that for any quadruple of vertices x_1, x_2, y_1, y_2 with $d(x_1, x_2) = d(y_1, y_2) \leq m$ there is an automorphism τ such that $x_i^\tau = y_i$ ($i = 1, 2$).

- Praeger et al. (2010) also introduced the notion of m-geodetically-transitive graphs, i.e. the automorphism group is transitive on the $(m+1)$-tupels (x_0, x_1, \ldots, x_m) with $x_i \sim x_{i+1}$ and $d(x_0, x_m) = m$.
Question:

Are there partially m-distance-transitive graphs Γ which are not $(m + 1)$-distance-transitive with $m < \text{diam}(\Gamma)$ with m large?
Question:

Are there partially m-distance-transitive graphs Γ which are not $(m + 1)$-distance-transitive with $m < \text{diam}(\Gamma)$ with m large? The same question for m-geodetically-transitive graphs.
Outline

1. t-Walk-regular graphs
 - Definitions
 - Examples
 - Partially distance-regular graphs

2. Some results
 - Adjacency algebra
 - Terwilliger

3. Examples with relatively many eigenvalues
 - A result of C. Dalfó et al.
 - Graphs from group divisible designs

4. Association schemes
 - Definitions
 - Examples

5. Multiplicity results
 - Multiplicity 3
 - Problems
• Let Γ be a connected graph, say with diameter D.
• Let $\Gamma_i(x) := \{y \in V(\Gamma) \mid d(x, y) = i\}$.
Let Γ be a connected graph, say with diameter D.

Let $\Gamma_i(x) := \{y \in V(\Gamma) \mid d(x, y) = i\}$.

We say Γ is t-partially distance-regular ($t \leq D$) (with partial intersection array $\iota = \{b_0, \ldots, b_t; c_1 = 1, c_2, \ldots, c_t\}$) if $\#\Gamma_{i-1}(y) \cap \Gamma_1(x) = c_i$ and $\#\Gamma_{i+1}(y) \cap \Gamma_1(x) = b_i$ for $d(x, y) = i \leq t$ with the understanding that $b_D = 0$.
- Let Γ be a connected graph, say with diameter D.
- Let $\Gamma_i(x) := \{ y \in V(\Gamma) \mid d(x, y) = i \}$.
- We say Γ is t-partially distance-regular ($t \leq D$) (with partial intersection array $\iota = \{ b_0, \ldots, b_t; c_1 = 1, c_2, \ldots, c_t \}$) if $\#\Gamma_{i-1}(y) \cap \Gamma_1(x) = c_i$ and $\#\Gamma_{i+1}(y) \cap \Gamma_1(x) = b_i$ for $d(x, y) = i \leq t$ with the understanding that $b_{t+1} = 0$.
- If $t = D$, the graph is called distance-regular.
A distance-regular graph with diameter D is D-walk-regular (Rowlinson).
- A distance-regular graph with diameter D is D-walk-regular (Rowlinson).
- t-Walk-regularity is a global condition and t-partially distance-regularity is local condition.
A distance-regular graph with diameter D is D-walk-regular (Rowlinson).

t-Walk-regularity is a global condition and t-partially distance-regularity is local condition.

The last condition is much weaker than the first. Example: Take the folded n-cube $\tilde{Q}(n)$, i.e. you take the n-cube and you identify the antipodes. Take the cartesian product $K_2 \times \tilde{Q}(n)$. The resulting graph is about $n/2$-partially distance-regular but not even 1-walk-regular.
Outline

1. *t*-Walk-regular graphs
 - Definitions
 - Examples
 - Partially distance-regular graphs

2. Some results
 - Adjacency algebra
 - Terwilliger

3. Examples with relatively many eigenvalues
 - A result of C. Dalfó et al.
 - Graphs from group divisible designs

4. Association schemes
 - Definitions
 - Examples

5. Multiplicity results
 - Multiplicity 3
 - Problems
In this part of the talk we will show that some results on distance-regular graphs can be extended to 2-walk-regular graphs (but not to 1-walk-regular graphs).
In this part of the talk we will show that some results on distance-regular graphs can be extended to 2-walk-regular graphs (but not to 1-walk-regular graphs).
First we need to look at the adjacency algebra for an \(m \)-walk-regular graph.
Adjacency algebra

In this part of the talk we will show that some results on distance-regular graphs can be extended to 2-walk-regular graphs (but not to 1-walk-regular graphs).

First we need to look at the adjacency algebra for an \(m \)-walk-regular graph.

- \(\Gamma \) a graph with adjacency matrix \(A \).
- The adjacency algebra \(A \) is the matrix algebra generated by \(A \), i.e. the algebra consisting of all polynomials in \(A \) with coefficients in the real field.
Adjacency algebra

In this part of the talk we will show that some results on distance-regular graphs can be extended to 2-walk-regular graphs (but not to 1-walk-regular graphs).

First we need to look at the adjacency algebra for an \(m \)-walk-regular graph.

- \(\Gamma \) a graph with adjacency matrix \(A \).
- The adjacency algebra \(\mathcal{A} \) is the matrix algebra generated by \(A \), i.e. the algebra consisting of all polynomials in \(A \) with coefficients in the real field.
- Assume that \(\Gamma \) has distinct eigenvalues \(\theta_0 > \theta_1 > \cdots > \theta_d \).
In this part of the talk we will show that some results on distance-regular graphs can be extended to 2-walk-regular graphs (but not to 1-walk-regular graphs).

First we need to look at the adjacency algebra for an m-walk-regular graph.

- Γ a graph with adjacency matrix A.
- The adjacency algebra \mathcal{A} is the matrix algebra generated by A, i.e. the algebra consisting of all polynomials in A with coefficients in the real field.
- Assume that Γ has distinct eigenvalues $\theta_0 > \theta_1 > \cdots > \theta_d$.
- Then $\dim(\mathcal{A}) = d + 1$ and \mathcal{A} has primitive idempotents E_i, $i = 0, 1, \ldots, d$ such that $AE_i = \theta_i E_i$.
Adjacency algebra 2

- Let Γ be a connected graph, say with diameter D.
Let Γ be a connected graph, say with diameter D.

Let A_i be the distance-i matrix, i.e. $(A_i)_{xy} = 1$ if $d(x,y) = i$ and 0 otherwise.

Let $m \leq D$.
Let Γ be a connected graph, say with diameter D.

Let A_i be the distance-i matrix, i.e. $(A_i)_{xy} = 1$ if $d(x, y) = i$ and 0 otherwise.

Let $m \leq D$.

Then Γ is m-walk-regular if and only if $A_i \circ E_j = c_{ij}A_i$ for some scalar c_{ij} for all $0 \leq i \leq m$ and $0 \leq j \leq d$.

Let Γ be a connected graph, say with diameter D.

Let A_i be the distance-i matrix, i.e. $(A_i)_{xy} = 1$ if $d(x, y) = i$ and 0 otherwise.

Let $m \leq D$.

Then Γ is m-walk-regular if and only if $A_i \circ E_j = c_{ij}A_i$ for some scalar c_{ij} for all $0 \leq i \leq m$ and $0 \leq j \leq d$.

Note a 0-walk-regular graph is regular say with valency $k(=b_0)$.
Outline

1. *t*-Walk-regular graphs
 - Definitions
 - Examples
 - Partially distance-regular graphs

2. Some results
 - Adjacency algebra
 - Terwilliger

3. Examples with relatively many eigenvalues
 - A result of C. Dalfó et al.
 - Graphs from group divisible designs

4. Association schemes
 - Definitions
 - Examples

5. Multiplicity results
 - Multiplicity 3
 - Problems
Now I will give some results of Terwilliger that can be generalised to 2-walk-regular graphs.
The local subgraph of a graph Γ in a vertex x, $\Delta(x)$, is the subgraph induced on the neighbours of x.
Now I will give some results of Terwilliger that can be generalised to 2-walk-regular graphs. The local subgraph of a graph Γ in a vertex x, $\Delta(x)$, is the subgraph induced on the neighbours of x.

Theorem

Let Γ be a connected 2-walk-regular graph with distinct eigenvalues $k = \theta_0 > \theta_1 > \cdots > \theta_d$. Let x be a vertex of Γ and let $\Delta(x)$ has eigenvalues $a_1 = \eta_1 \geq \eta_2 \geq \cdots \geq \eta_k$. Then $b^- := -1 - \frac{b_1}{1+\theta_1} \leq \eta_k \leq \eta_2 \leq b^+ := -1 - \frac{b_1}{1+\theta_d}$.
If one of the multiplicities is small we can say more.
If one of the multiplicities is small we can say more.

Theorem

Let Γ be a connected coconnected (i.e. its complement is connected as well) 2-walk-regular graph with distinct eigenvalues $k = \theta_0 > \theta_1 > \cdots > \theta_d$ with respective multiplicities $m_0 = 1, m_1, \ldots, m_d$. If $m_i < k$ for $1 \leq i \leq d$ then

- $i = 1$ or $i = d$.

$-b_i + 2m_i$ is an eigenvalue of $\Delta(x)$ with multiplicity at least $k - m_i$.

$(Godsil)$

$k \leq (m_i + 2)(m_i - 1)/2$.

If one of the multiplicities is small we can say more.

Theorem

Let Γ be a connected coconnected (i.e. its complement is connected as well) 2-walk-regular graph with distinct eigenvalues $k = \theta_0 > \theta_1 > \cdots > \theta_d$ with respective multiplicities $m_0 = 1, m_1, \ldots, m_d$. If $m_i < k$ for $1 \leq i \leq d$ then

- $i = 1$ or $i = d$.
- $-1 - \frac{b_1}{1+\theta_i}$ is an eigenvalue of $\Delta(x)$ with multiplicity at least $k - m_i$.

(Godsil) $k \leq \left(\frac{m_i + 2}{m_i - 1}\right)$.
If one of the multiplicities is small we can say more.

Theorem

Let Γ be a connected coconnected (i.e. its complement is connected as well) 2-walk-regular graph with distinct eigenvalues $k = \theta_0 > \theta_1 > \cdots > \theta_d$ with respective multiplicities $m_0 = 1, m_1, \ldots, m_d$. If $m_i < k$ for $1 \leq i \leq d$ then

- $i = 1$ or $i = d$.
- $-1 - \frac{b_1}{1 + \theta_i}$ is an eigenvalue of $\Delta(x)$ with multiplicity at least $k - m_i$.
- (Godsil) $k \leq (m_i + 2)(m_i - 1)/2$.
Outline

1. *t*-Walk-regular graphs
 - Definitions
 - Examples
 - Partially distance-regular graphs

2. Some results
 - Adjacency algebra
 - Terwilliger

3. Examples with relatively many eigenvalues
 - A result of C. Dalfó et al.
 - Graphs from group divisible designs

4. Association schemes
 - Definitions
 - Examples

5. Multiplicity results
 - Multiplicity 3
 - Problems
C. Dalfó et al. (2011) showed the following result.

Proposition

Let s, d be positive integers. Let Γ be a connected s-walk-regular graph with diameter $D \geq s$ and with exactly $d + 1$ distinct eigenvalues. Then the following hold:

- If $d \leq s + 1$, then Γ is distance-regular;
- If $d \leq s + 2$ and Γ is bipartite, then Γ is distance-regular.
C. Dalfó et al. (2011) showed the following result.

Proposition

Let s, d be positive integers. Let Γ be a connected s-walk-regular graph with diameter $D \geq s$ and with exactly $d + 1$ distinct eigenvalues. Then the following hold:

- If $d \leq s + 1$, then Γ is distance-regular;
- If $d \leq s + 2$ and Γ is bipartite, then Γ is distance-regular.

Later we will construct infinitely many bipartite 2-walk-regular graphs with 6 eigenvalues, which are not distance-regular. So this shows that we can not do better for $s = 2$ in the second item.
Let us first find a 2-walk-regular graph with 5 distinct eigenvalues.
Let us first find a 2-walk-regular graph with 5 distinct eigenvalues.

Let O_4 be the Odd graph with valency 4.

It has 35 vertices and distinct eigenvalues $4, 2, -1, -3$.
Let us first find a 2-walk-regular graph with 5 distinct eigenvalues.

Let O_4 be the Odd graph with valency 4.

It has 35 vertices and distinct eigenvalues $4, 2, -1, -3$.

Consider the line graph Λ of O_4.

Then it easy to see that Λ is 2-partially distance-transitive, so 2-walk-regular.
• Let us first find a 2-walk-regular graph with 5 distinct eigenvalues.
• Let O_4 be the Odd graph with valency 4.
• It has 35 vertices and distinct eigenvalues 4, 2, -1, -3.
• Consider the line graph Λ of O_4.
• Then it easy to see that Λ is 2-partially distance-transitive, so 2-walk-regular.
• It is easy to calculate that Λ has exactly 5 distinct eigenvalues 6, 4, 1, -1 and -2.
Let us first find a 2-walk-regular graph with 5 distinct eigenvalues.

Let O_4 be the Odd graph with valency 4.

It has 35 vertices and distinct eigenvalues $4, 2, -1, -3$.

Consider the line graph Λ of O_4.

Then it easy to see that Λ is 2-partially distance-transitive, so 2-walk-regular.

It is easy to calculate that Λ has exactly 5 distinct eigenvalues $6, 4, 1, -1$ and -2.

This shows that we found a 2-walk-regular graph with 5 distinct eigenvalues, which is not distance-regular.
Let us first find a 2-walk-regular graph with 5 distinct eigenvalues.

Let O_4 be the Odd graph with valency 4.

It has 35 vertices and distinct eigenvalues $4, 2, -1, -3$.

Consider the line graph Λ of O_4.

Then it easy to see that Λ is 2-partially distance-transitive, so 2-walk-regular.

It is easy to calculate that Λ has exactly 5 distinct eigenvalues $6, 4, 1, -1$ and -2.

This shows that we found a 2-walk-regular graph with 5 distinct eigenvalues, which is not distance-regular.

It is an open problem, whether there exist infinitely many 2-walk-regular graphs with exactly 5 distinct eigenvalues, which are not distance-regular.
Let us first find a 2-walk-regular graph with 5 distinct eigenvalues.
Let O_4 be the Odd graph with valency 4.
It has 35 vertices and distinct eigenvalues $4, 2, -1, -3$.
Consider the line graph Λ of O_4.
Then it easy to see that Λ is 2-partially distance-transitive, so 2-walk-regular.
It is easy to calculate that Λ has exactly 5 distinct eigenvalues $6, 4, 1, -1$ and -2.
This shows that we found a 2-walk-regular graph with 5 distinct eigenvalues, which is not distance-regular.
It is an open problem, whether there exist infinitely many 2-walk-regular graphs with exactly 5 distinct eigenvalues, which are not distance-regular.
One way to construct them is to construct non-bipartite distance-regular graphs with diameter 3 and girth 6, and then take its line graph.
Outline

1. t-Walk-regular graphs
 - Definitions
 - Examples
 - Partially distance-regular graphs

2. Some results
 - Adjacency algebra
 - Terwilliger

3. Examples with relatively many eigenvalues
 - A result of C. Dalfó et al.
 - Graphs from group divisible designs

4. Association schemes
 - Definitions
 - Examples

5. Multiplicity results
 - Multiplicity 3
 - Problems
Classical examples

- The following examples of group divisible designs where found by Bose in the 1940’s.
Classical examples

- The following examples of group divisible designs were found by Bose in the 1940’s.
- Let $r \geq 2$ be an integer and let q be a prime power.
- Let V be a vector space of dimension r over the finite field with q elements, $\text{GF}(q)$.

\[\text{Let } r \geq 2 \text{ be an integer and let } q \text{ be a prime power.} \]

\[\text{Let } V \text{ be a vector space of dimension } r \text{ over the finite field with } q \text{ elements, GF}(q). \]
The following examples of group divisible designs where found by Bose in the 1940’s.

Let $r \geq 2$ be an integer and let q be a prime power.

Let V be a vector space of dimension r over the finite field with q elements, $\text{GF}(q)$.

Let X be the set of non-zero elements of V.

For $x \in X$, let $G_x = \{\alpha x \mid \alpha \in \text{GF}^*(q) := \text{GF}(q) \setminus \{0\}\}$ and $G := \{G_x \mid x \in X\}$.

Classical examples
The following examples of group divisible designs where found by Bose in the 1940’s.

Let $r \geq 2$ be an integer and let q be a prime power.

Let V be a vector space of dimension r over the finite field with q elements, GF(q).

Let X be the set of non-zero elements of V.

For $x \in X$, let $G_x = \{ \alpha x \mid \alpha \in \text{GF}^*(q) := \text{GF}(q) \setminus \{0\} \}$ and $G := \{ G_x \mid x \in X \}$.

Let $B := \{ x + H \mid x \in X, H \text{ a hyperplane in } V, x \notin H \}$, where $x + H = \{ x + h \mid h \in H \}$, the set of affine hyperplanes.
The following examples of group divisible designs where found by Bose in the 1940’s.

Let \(r \geq 2 \) be an integer and let \(q \) be a prime power.

Let \(V \) be a vector space of dimension \(r \) over the finite field with \(q \) elements, \(\text{GF}(q) \).

Let \(X \) be the set of non-zero elements of \(V \).

For \(x \in X \), let \(G_x = \{ \alpha x \mid \alpha \in \text{GF}^*(q) := \text{GF}(q) \setminus \{0\} \} \) and \(G := \{ G_x \mid x \in X \} \).

Let \(B := \{ x + H \mid x \in X, H \text{ a hyperplane in } V, x \not\in H \} \), where \(x + H = \{ x + h \mid h \in H \} \), the set of affine hyperplanes.

Take two distinct elements in \(X \). If they are linearly dependent then there is no proper affine hyperplane they lie together in.

If they are linearly independent then there are exactly \(q^{r-2} \) proper affine hyperplanes they lie together in.
Classical examples

- The following examples of group divisible designs where found by Bose in the 1940’s.
- Let $r \geq 2$ be an integer and let q be a prime power.
- Let V be a vector space of dimension r over the finite field with q elements, $GF(q)$.
- Let X be the set of non-zero elements of V.
- For $x \in X$, let $G_x = \{\alpha x \mid \alpha \in GF^*(q) := GF(q) \setminus \{0\}\}$ and $G := \{G_x \mid x \in X\}$.
- Let $B := \{x + H \mid x \in X, H \text{ a hyperplane in } V, x \not\in H\}$, where $x + H = \{x + h \mid h \in H\}$, the set of affine hyperplanes.
- Take two distinct elements in X. If they are linearly dependent then there is no proper affine hyperplane they lie together in.
- If they are linearly independent then there are exactly q^{r-2} proper affine hyperplanes they lie together in.
- This shows:
The design \(D(r, q) := (X, G, B) \) is a group divisible design with the dual property with parameters \((q - 1, \frac{q^r - 1}{q - 1}; q^{r-1}; 0, q^{r-2})\), or in other words a \(\text{GDDDP}(q - 1, \frac{q^r - 1}{q - 1}; q^{r-1}; 0, q^{r-2}) \). (The dual property means that we can interchange the role of points and blocks to obtain a design with the same parameters).

It is clear that the general linear group \(\text{GL}(r, q) \) acts as a group of automorphisms of \(D(r, q) \) such that its subgroup \(Z := \{ \alpha I_r \mid \alpha \in \text{GF}^*(q) \} \) fixes the set \(G_x \) for all \(x \in X \).
The design $\mathcal{D}(r, q) := (X, \mathcal{G}, \mathcal{B})$ is a group divisible design with the dual property with parameters $(q - 1, \frac{q^r - 1}{q-1}; q^r - 1; 0, q^r - 2)$, or in other words a GDDDP$(q - 1, \frac{q^r - 1}{q-1}; q^r - 1; 0, q^r - 2)$. (The dual property means that we can interchange the role of points and blocks to obtain a design with the same parameters).

It is clear that the general linear group $\text{GL}(r, q)$ acts as a group of automorphisms of $\mathcal{D}(r, q)$ such that its subgroup $Z := \{\alpha I_r \mid \alpha \in \text{GF}^*(q)\}$ fixes the set G_x for all $x \in X$.

Let a be a primitive element of $\text{GF}^*(q^r)$.

Observe that $(\text{GF}^*(q^r), \cdot) = \langle a \rangle$ is a cyclic group of order $q^r - 1$.
The design $\mathcal{D}(r, q) := (X, \mathcal{G}, \mathcal{B})$ is a group divisible design with the dual property with parameters $(q - 1, \frac{q^r - 1}{q - 1}; q^r - 1; 0, q^r - 2)$, or in other words a GDDDP$(q - 1, \frac{q^r - 1}{q - 1}; q^r - 1; 0, q^r - 2)$. (The dual property means that we can interchange the role of points and blocks to obtain a design with the same parameters).

It is clear that the general linear group $\text{GL}(r, q)$ acts as a group of automorphisms of $\mathcal{D}(r, q)$ such that its subgroup $Z := \{\alpha I_r \mid \alpha \in \text{GF}^*(q)\}$ fixes the set G_x for all $x \in X$.

Let a be a primitive element of $\text{GF}^*(q^r)$.

Observe that $(\text{GF}^*(q^r), \cdot) = \langle a \rangle$ is a cyclic group of order $q^r - 1$.

As we can consider $\text{GF}(q^r)$ as a vector space of dimension r over $\text{GF}(q)$, with basis $\{a^i \mid i = 0, 1, 2, \ldots, r - 1\}$.

Now define the map $\tau_a \in \text{GL}(r, q)$ by $\tau_a(x) = ax$ for $x \in \text{GF}^*(q^r)$.

• The design $\mathcal{D}(r, q) := (X, \mathcal{G}, \mathcal{B})$ is a group divisible design with the dual property with parameters $(q - 1, \frac{q^r - 1}{q-1}; q^{r-1}; 0, q^{r-2})$, or in other words a GDDDP$(q - 1, \frac{q^r - 1}{q-1}; q^{r-1}; 0, q^{r-2})$. (The dual property means that we can interchange the role of points and blocks to obtain a design with the same parameters).

• It is clear that the general linear group $GL(r, q)$ acts as a group of automorphisms of $\mathcal{D}(r, q)$ such that its subgroup $Z := \{\alpha I_r \mid \alpha \in GF^*(q)\}$ fixes the set G_x for all $x \in X$.

• Let a be a primitive element of $GF^*(q^r)$.

• Observe that $(GF^*(q^r), \cdot) = \langle a \rangle$ is a cyclic group of order $q^r - 1$.

• As we can consider $GF(q^r)$ as a vector space of dimension r over $GF(q)$, with basis $\{a^i \mid i = 0, 1, 2, \ldots, r-1\}$.

• Now define the map $\tau_a \in GL(r, q)$ by $\tau_a(x) = ax$ for $x \in GF^*(q^r)$.

• Then τ_a generates a cyclic subgroup C of order $q^r - 1$ in $GL(r, q)$.

• This shows that there is a cyclic group (the Singer group) of automorphisms that acts regularly on the points of the design. We will need this later.
Now we are going to construct a graph $\Gamma(r, q)$ from the design $D(r, q) := (X, G, B)$.
Now we are going to construct a graph $\Gamma(r, q)$ from the design $\mathcal{D}(r, q) := (X, G, B)$.

The graph $\Gamma(r, q)$ has as vertex set $X \cup B$.

$x \in X$ is adjacent to $B \in B$ if x lies in B.

This clearly gives a bipartite graph.
Now we are going to construct a graph $\Gamma(r, q)$ from the design $\mathcal{D}(r, q) := (X, \mathcal{G}, \mathcal{B})$.

The graph $\Gamma(r, q)$ has as vertex set $X \cup \mathcal{B}$.

$x \in X$ is adjacent to $B \in \mathcal{B}$ if x lies in B.

This clearly gives a bipartite graph.

It is not so difficult to see that $\Gamma(r, q)$ has exactly 6 distinct eigenvalues and is 2-arc-transitive, so, in particular, it is 2-walk-regular.
Now we are going to construct a graph $\Gamma(r, q)$ from the design $D(r, q) := (X, G, B)$.

The graph $\Gamma(r, q)$ has as vertex set $X \cup B$.

$x \in X$ is adjacent to $B \in B$ if x lies in B.

This clearly gives a bipartite graph.

It is not so difficult to see that $\Gamma(r, q)$ has exactly 6 distinct eigenvalues and is 2-arc-transitive, so, in particular, it is 2-walk-regular.

You can construct other GDDDP from these examples by considering certain subgroups of C.

It can be shown that the graphs $\Gamma(r, q)$ are 2-arc-transitive dihedrants, using the Singer group.

Du et al. classified the 2-arc-transitive dihedrants, but in their classification they did not have the graphs $\Gamma(r, q)$ with q even.
Some 2-arc transitive graphs

- Now we are going to construct a graph $\Gamma(r, q)$ from the design $\mathcal{D}(r, q) := (X, \mathcal{G}, \mathcal{B})$.
- The graph $\Gamma(r, q)$ has as vertex set $X \cup \mathcal{B}$.
- $x \in X$ is adjacent to $B \in \mathcal{B}$ if x lies in B.
- This clearly gives a bipartite graph.
- It is not so difficult to see that $\Gamma(r, q)$ has exactly 6 distinct eigenvalues and is 2-arc-transitive, so, in particular, it is 2-walk-regular.
- You can construct other GDDDP from these examples by considering certain subgroups of C.
- It can be shown that the graphs $\Gamma(r, q)$ are 2-arc-transitive dihedrants, using the Singer group.
- Du et al. classified the 2-arc-transitive dihedrants, but in their classification they did not have the graphs $\Gamma(r, q)$ with q even.
- $\mathcal{D}(r, q)$ can also be constructed using relative difference sets. That is how we found the examples of Bose.
Outline

1. t-Walk-regular graphs
 - Definitions
 - Examples
 - Partially distance-regular graphs

2. Some results
 - Adjacency algebra
 - Terwilliger

3. Examples with relatively many eigenvalues
 - A result of C. Dalfó et al.
 - Graphs from group divisible designs

4. Association schemes
 - Definitions
 - Examples

5. Multiplicity results
 - Multiplicity 3
 - Problems
Let X be a finite set with n elements. A association scheme is a pair (X, \mathcal{R}) such that

1. $\mathcal{R} = \{R_0, R_1, \cdots, R_d\}$ is a partition of $X \times X$,
2. $R_0 = \Delta := \{(x, x) \mid x \in X\}$,
3. for each i ($0 \leq i \leq d$) there exists j such that $R_i = R_j^T$, i.e., if $(x, y) \in R_i$ then $(y, x) \in R_j$,
4. there are numbers p_{ij}^h (the intersection numbers of (X, \mathcal{R})) such that for any pair $(x, y) \in R_h$ the number of $z \in X$ with $(x, z) \in R_i$ and $(z, y) \in R_j$ equals p_{ij}^h.

The elements R_i are called the relations of (X, \mathcal{R}) and the number $d + 1$ of relations is called the rank of (X, \mathcal{R}).
Definitions 1

Let \(X \) be a finite set with \(n \) elements. A association scheme is a pair \((X, R)\) such that

1. \(R = \{R_0, R_1, \cdots, R_d\} \) is a partition of \(X \times X \),
2. \(R_0 = \Delta := \{(x, x) | x \in X\} \),
3. for each \(i \) (\(0 \leq i \leq d \)) there exists \(j \) such that \(R_i = R_j^T \), i.e., if \((x, y) \in R_i\) then \((y, x) \in R_j\),
4. there are numbers \(p_{ij}^h \) (the intersection numbers of \((X, R)\)) such that for any pair \((x, y) \in R_h\) the number of \(z \in X \) with \((x, z) \in R_i\) and \((z, y) \in R_j\) equals \(p_{ij}^h \).

- The elements \(R_i \) are called the relations of \((X, R)\) and the number \(d + 1 \) of relations is called the rank of \((X, R)\).
- If \(R_i^T = R_i \), then we call the relation \(R_i \) symmetric.
- If all relations are symmetric, we call the scheme symmetric.
Definitions 2

Let A_i be the relation matrix with respect to R_i such that the rows and the columns of A_i are indexed by the elements of X and the (x, y)-entry is 1 whenever $(x, y) \in R_i$ and 0 otherwise.
Definitions 2

Let A_i be the relation matrix with respect to R_i such that the rows and the columns of A_i are indexed by the elements of X and the (x, y)-entry is 1 whenever $(x, y) \in R_i$ and 0 otherwise.

Then the conditions (i)-(iv) are expressed by:

$(i)' \quad \sum_{i=0}^{d} A_i = J$, where J is the all-one matrix,

$(ii)' \quad A_0 = I$, where I is the identity matrix,

$(iii)' \quad$ For all i there exists j such that $(A_i)^T = A_j$,

$(iv)' \quad A_i A_j = \sum_{h=0}^{d} p_{ij}^h A_h$.

The Bose-Mesner Algebra \mathcal{M} is the matrix algebra generated by the relation matrices (over \mathbb{C}).

\mathcal{M} has a basis of primitive idempotents called scheme idempotents if the scheme is symmetric.
An association scheme \((X, R)\) with rank \(d + 1\) is called \(t\)-partially metric (with respect to a symmetric relation \(R\)) if there exists an ordering of the relation matrices \(A_0 = I, A_1, \ldots, A_d\) such that \(A_i\) is a polynomial of degree \(i\) in \(A\) for \(i = 1, 2, \ldots, t\), where \(A\) is the relation matrix of \(R\).
An association scheme \((X, R)\) with rank \(d + 1\) is called \(t\)-partially metric (with respect to a symmetric relation \(R\)) if there exists an ordering of the relation matrices \(A_0 = I, A_1, \ldots, A_d\) such that \(A_i\) is a polynomial of degree \(i\) in \(A\) for \(i = 1, 2, \ldots, t\), where \(A\) is the relation matrix of \(R\).

Note that \(A_1 = A\) as the relation matrices are \((0, 1)\)-matrices and that we assume that if \((X, R)\) is \(t\)-partially metric, then we always assume to have this ordering of the relation matrices \(A_0 = I, A_1, \ldots, A_d\) such that \(A_i\) is a polynomial of degree \(i\) in \(A\) for \(i = 1, 2, \ldots, t\).
Definitions 3

- An association scheme \((X, \mathcal{R})\) with rank \(d + 1\) is called \(t\)-partially metric (with respect to a symmetric relation \(\mathcal{R}\)) if there exists an ordering of the relation matrices \(A_0 = I, A_1, \cdots, A_d\) such that \(A_i\) is a polynomial of degree \(i\) in \(A\) for \(i = 1, 2, \ldots, t\), where \(A\) is the relation matrix of \(\mathcal{R}\).

- Note that \(A_1 = A\) as the relation matrices are \((0, 1)\)-matrices and that we assume that if \((X, \mathcal{R})\) is \(t\)-partially metric, then we always assume to have this ordering of the relation matrices \(A_0 = I, A_1, \cdots, A_d\) such that \(A_i\) is a polynomial of degree \(i\) in \(A\) for \(i = 1, 2, \ldots, t\).

- A (symmetric) association scheme with rank \(d + 1\) is called metric if it is \(d\)-partially metric.
We are going to construct graphs from association schemes.

- A graph Γ is called the **scheme graph** of (X, \mathcal{R}) (with respect to R) if the adjacency matrix A of Γ is equal to the relation matrix of R. In this case, we call the relation R the **corresponding relation** of Γ.

- We call the relation R **connected** if the corresponding scheme graph is connected.
We are going to construct graphs from association schemes.

- A graph Γ is called the scheme graph of (X, R) (with respect to R) if the adjacency matrix A of Γ is equal to the relation matrix of R. In this case, we call the relation R the corresponding relation of Γ.

- We call the relation R connected if the corresponding scheme graph is connected.

- If relation R is the corresponding relation for a t-partially metric scheme, then the corresponding scheme graph is t-walk-regular.
We are going to construct graphs from association schemes.

- A graph Γ is called the **scheme graph** of (X, R) (with respect to R) if the adjacency matrix A of Γ is equal to the relation matrix of R. In this case, we call the relation R the **corresponding relation** of Γ.

- We call the relation R **connected** if the corresponding scheme graph is connected.

- If relation R is the corresponding relation for a t-partially metric scheme, then the corresponding scheme graph is t-walk-regular.

- If the scheme is metric then the corresponding scheme graph is **distance-regular**.
The bipartite double of an association scheme \((X, R_0, R_1, \ldots, R_d)\) is the scheme \((X \times \{+, -\}, R_0^+, R_0^-, \ldots, R_d^+, R_d^-)\), where \((x, \epsilon)\) and \((y, \delta)\) are in relation \(R_i^{\epsilon\delta}\) when \(x, y\) are in relation \(R_i\).
Bipartite double

- The bipartite double of an association scheme \((X, R_0, R_1, \ldots, R_d)\) is the scheme \((X \times \{+, -\}, R_0^+, R_0^-, \ldots, R_d^+, R_d^-)\), where \((x, \epsilon)\) and \((y, \delta)\) are in relation \(R_i^{\epsilon \delta}\) when \(x, y\) are in relation \(R_i\).

- If \(\Gamma\) is the scheme graph \(\Gamma\) of relation \(R_i\) in the original scheme, then the scheme graph of relation \(R_i^-\) is the bipartite double of \(\Gamma\).
Outline

1. t-Walk-regular graphs
 - Definitions
 - Examples
 - Partially distance-regular graphs

2. Some results
 - Adjacency algebra
 - Terwilliger

3. Examples with relatively many eigenvalues
 - A result of C. Dalfó et al.
 - Graphs from group divisible designs

4. Association schemes
 - Definitions
 - Examples

5. Multiplicity results
 - Multiplicity 3
 - Problems
Most of the 2-partially metric association schemes come from groups. I will describe the scheme graphs of some examples.

- The t-arc-transitive graphs are scheme graphs of t-partially metric association schemes, but those schemes are usually not symmetric. These graphs have $c_2 = 1$ if $t \geq 2$.
Examples 1

Most of the 2-partially metric association schemes come from groups. I will describe the scheme graphs of some examples.

- The t-arc-transitive graphs are scheme graphs of t-partially metric association schemes, but those schemes are usually not symmetric. These graphs have $c_2 = 1$ if $t \geq 2$.

- The bipartite double of the dodecahedron is the scheme graph of two different symmetric association schemes, namely the bipartite double scheme BD of the metric scheme of the dodecahedron and a fusion scheme of BD. The scheme BD is 2-partially metric, whereas the latter scheme is 3-partially metric.
Examples 1

Most of the 2-partially metric association schemes come from groups. I will describe the scheme graphs of some examples.

- The t-arc-transitive graphs are scheme graphs of t-partially metric association schemes, but those schemes are usually not symmetric. These graphs have $c_2 = 1$ if $t \geq 2$.

- The bipartite double of the dodecahedron is the scheme graph of two different symmetric association schemes, namely the bipartite double scheme BD of the metric scheme of the dodecahedron and a fusion scheme of BD. The scheme BD is 2-partially metric, whereas the latter scheme is 3-partially metric.

- The symmetric bilinear forms graphs $SBF(n, q)$ have as vertices the $n \times n$ symmetric matrices over a finite field $GF(q)$ (where q is a prime power) and two matrices are adjacent if their difference has rank 1. These graphs have $c_2 \geq 2$ and are locally the disjoint union of cliques. For $n \geq 4$ they are 2-distance-transitive but not distance-regular.
Examples 2

- De Caen et al. found an infinite family of triangle-free distance-regular antipodal graphs of diameter 3. If you take the bipartite double of these graphs you obtain 2-walk-regular graphs with $c_2 = 2$ and $a_1 = 0$. They are also the scheme graphs of the bipartite double scheme of the underlying metric scheme, and this scheme is 2-partially metric and symmetric.
Examples from codes

- Let C be a binary linear code, say of length n, i.e. a subspace of the n-dim space $GF(2)^n$.
- Let $\Gamma(C)$ be the coset graph of C, i.e. the vertices are the cosets $x + C$ of C and two cosets are adjacent if there is an edge between them in the Hamming graph.
Examples from codes

- Let C be a binary linear code, say of length n, i.e. a subspace of the n-dim space $\mathbb{GF}(2)^n$.
- Let $\Gamma(C)$ be the **coset graph of C**, i.e. the vertices are the cosets $x + C$ of C and two cosets are adjacent if there is an edge between them in the Hamming graph.
- If the minimum distance in C is at least $2t \geq 2$, then $c_i = i$ and $a_i = 0$ for $i \leq t$.
- But usually the coset graph $\Gamma(C)$ is not 2-walk-regular.
Examples from codes

- Let C be a binary linear code, say of length n, i.e. a subspace of the n-dim space $\text{GF}(2)^n$.
- Let $\Gamma(C)$ be the **coset graph of C**, i.e. the vertices are the cosets $x + C$ of C and two cosets are adjacent if there is an edge between them in the Hamming graph.
- If the minimum distance in C is at least $2t \geq 2$, then $c_i = i$ and $a_i = 0$ for $i \leq t$.
- But usually the coset graph $\Gamma(C)$ is not 2-walk-regular.
- If the automorphism group of the code C acts 2-transitive on the positions and the minimum weight is at 4, then $\Gamma(C)$ is partially 2-distance-transitive.
Examples from codes 2

- Let C be the truncated code of the even sub code of the Golay code. Then $\Gamma(C)$ is distance-transitive.
Examples from codes 2

- Let C be the truncated code of the even sub code of the Golay code. Then $\Gamma(C)$ is distance-transitive.
- The bipartite double of $\Gamma(C)$ is 3-distance-transitive, and is the coset graph of the even sub code of C.
Let C be the truncated code of the even sub code of the Golay code. Then $\Gamma(C)$ is distance-transitive.

The bipartite double of $\Gamma(C)$ is 3-distance-transitive, and is the coset graph of the even sub code of C.

There are some more examples which can be constructed from certain sub codes of the Golay, but those that are 3-distance-transitive are also distance-transitive.
Examples from codes 2

- Let C be the truncated code of the even sub code of the Golay code. Then $\Gamma(C)$ is distance-transitive.
- The bipartite double of $\Gamma(C)$ is 3-distance-transitive, and is the coset graph of the even sub code of C.
- There are some more examples which can be constructed from certain sub codes of the Golay, but those that are 3-distance-transitive are also distance-transitive.
- Let C be the simplex t-dimensional code over the binary field, i.e. the dual code of a Hamming code of length $2^t - 1$. Then the coset graph $\Gamma(C)$ is 2-distance-transitive but not 3-walk-regular.
- There are many more examples of coset graphs that are 2-distance-transitive. We are still working in this.
Examples from designs

- The graph $\Gamma(r, q)$ constructed from the group divisible designs above comes from a five-class association scheme.
Examples from designs

- The graph $\Gamma(r, q)$ constructed from the group divisible designs above comes from a five-class association scheme.
- Let \mathcal{D} be a 2-design for which the automorphism group of the design acts 2-transitive on the points.
Examples from designs

- The graph $\Gamma(r, q)$ constructed from the group divisible designs above comes from a five-class association scheme.
- Let \mathcal{D} be a 2-design for which the automorphism group of the design acts 2-transitive on the points.
- Let C be the linear code generated by the support of the blocks. Note it makes a difference here whether you look at the design or at its complementary design, i.e. the blocks are the complements of the blocks of the original design.
Examples from designs

- The graph $\Gamma(r, q)$ constructed from the group divisible designs above comes from a five-class association scheme.
- Let D be a 2-design for which the automorphism group of the design acts 2-transitive on the points.
- Let C be the linear code generated by the support of the blocks. Note it makes a difference here whether you look at the design or at its complementary design, i.e. the blocks are the complements of the blocks of the original design.
- For example take as your design the projective plane of order a power of 2. (For odd order you obtain the trivial code $GF(2)^n$.) The dimension of this code has been determined long ago by many people. We can show the coset graph is 2-distance-transitive. We are still trying to determine whether they are 3-walk-regular.
Outline

1. *t*-Walk-regular graphs
 - Definitions
 - Examples
 - Partially distance-regular graphs

2. Some results
 - Adjacency algebra
 - Terwilliger

3. Examples with relatively many eigenvalues
 - A result of C. Dalfó et al.
 - Graphs from group divisible designs

4. Association schemes
 - Definitions
 - Examples

5. Multiplicity results
 - Multiplicity 3
 - Problems
Theorem 1 [2013,CDKP]

Let Γ be a 2-walk-regular graph, different from a complete multipartite graph, with valency $k \geq 3$ and eigenvalue $\theta \neq \pm k$ with multiplicity 3.
2-Walk-regular graphs with multiplicity 3

Theorem 1 [2013,CDKP]

Let Γ be a 2-walk-regular graph, different from a complete multipartite graph, with valency $k \geq 3$ and eigenvalue $\theta \neq \pm k$ with multiplicity 3. Then Γ is a cubic graph with $a_1 = a_2 = 0$ (i.e. there are no triangles nor pentagons), the dodecahedron, or the icosahedron.
Theorem 1 [2013,CDKP]

Let Γ be a 2-walk-regular graph, different from a complete multipartite graph, with valency $k \geq 3$ and eigenvalue $\theta \neq \pm k$ with multiplicity 3. Then Γ is a cubic graph with $a_1 = a_2 = 0$ (i.e. there are no triangles nor pentagons), the dodecahedron, or the icosahedron.

Cubic 2-walk-regular graphs?????
An family of cubic 2-walk-regular graphs with multiplicity 3

In 2002, Feng and Kwak constructed a family of arc-transitive covers of the cube as voltage graphs and this family gives an infinite family of cubic 2-walk-regular graphs with eigenvalue ± 1 with multiplicity 3.
An family of cubic 2-walk-regular graphs with multiplicity 3

In 2002, Feng and Kwak constructed a family of arc-transitive covers of the cube as voltage graphs and this family gives an infinite family of cubic 2-walk-regular graphs with eigenvalue ± 1 with multiplicity 3. By considering the orbitals of the corresponding automorphism groups, we obtain an infinite family of non-symmetric association schemes with a connecting symmetric relation with valency 3, whose scheme graphs are the above graphs.
An family of cubic 2-walk-regular graphs with multiplicity 3

In 2002, Feng and Kwak constructed a family of arc-transitive covers of the cube as voltage graphs and this family gives an infinite family of cubic 2-walk-regular graphs with eigenvalue ± 1 with multiplicity 3. By considering the orbitals of the corresponding automorphism groups, we obtain an infinite family of non-symmetric association schemes with a connecting symmetric relation with valency 3, whose scheme graphs are the above graphs.

But if you assume that the graph comes from a symmetric association scheme with a connecting relation with valency 3, then we can classify them.
Our Result:

Theorem 2

Let (X, \mathcal{R}) be a 2-partially metric association scheme with corresponding relation R, corresponding valency $k \geq 3$ and rank $d + 1 \geq 3$. Let E_0, E_1, \ldots, E_d be the minimal scheme idempotents with corresponding eigenvalues $\theta_0 = k, \theta_1, \ldots, \theta_d$ and multiplicities $m_0 = 1, m_1, \ldots, m_d$ respectively. Let Γ be the scheme graph of (X, \mathcal{R}). If there exists an integer i ($1 \leq i \leq d$) such that $m_i = 3$, then one of the following holds:

(i) Γ is the cube,

(ii) Γ is the Möbius-Kantor graph (a 2-cover of the cube),

(iii) Γ is the Nauru graph (a 3-cover of the cube),

(iv) Γ is the dodecahedron,

(v) Γ is the bipartite double of the dodecahedron,

(vi) Γ is the icosahedron,

(vii) Γ is the octahedron,

(viii) Γ is a regular complete 4-partite graph.

Moreover, the association scheme is uniquely determined by Γ.
The bipartite double of the dodecahedron has no eigenvalue with multiplicity 3. As I remarked earlier, there are two symmetric 2-partially metric association schemes with this graph as its scheme graphs, namely the bipartite double scheme of the dodecahedron and a fusion scheme of this scheme.
Remarks

- The bipartite double of the dodecahedron has no eigenvalue with multiplicity 3. As I remarked earlier, there are two symmetric 2-partially metric association schemes with this graph as its scheme graphs, namely the bipartite double scheme of the dodecahedron and a fusion scheme of this scheme.

- The first scheme has four minimal idempotents with multiplicity 3, two of them have corresponding eigenvalue $\sqrt{5}$ and two of them have corresponding eigenvalue $-\sqrt{5}$.
Remarks

- The bipartite double of the dodecahedron has no eigenvalue with multiplicity 3. As I remarked earlier, there are two symmetric 2-partially metric association schemes with this graph as its scheme graphs, namely the bipartite double scheme of the dodecahedron and a fusion scheme of this scheme.

- The first scheme has four minimal idempotents with multiplicity 3, two of them have corresponding eigenvalue $\sqrt{5}$ and two of them have corresponding eigenvalue $-\sqrt{5}$.

- If the valency k equals three, then we do not need to assume that the scheme is 2-partially metric, as that is implied by a result of N. Yamazaki (1998).
The bipartite double of the dodecahedron has no eigenvalue with multiplicity 3. As I remarked earlier, there are two symmetric 2-partially metric association schemes with this graph as its scheme graphs, namely the bipartite double scheme of the dodecahedron and a fusion scheme of this scheme.

The first scheme has four minimal idempotents with multiplicity 3, two of them have corresponding eigenvalue $\sqrt{5}$ and two of them have corresponding eigenvalue $-\sqrt{5}$.

If the valency k equals three, then we do not need to assume that the scheme is 2-partially metric, as that is implied by a result of N. Yamazaki (1998).

The theorem is not true for symmetric association schemes (which are not 2-partially metric), as the t-coclique extensions of the dodecahedron show. (In this case the smallest non-trivial valency is equal to $3t$)
Ei. Bannai and Et. Bannai (2006) showed the following result:

Theorem 3

The scheme graph of a **primitive** (i.e. all non-trivial relations are connected) association scheme with a multiplicity 3 is the tetrahedron.
Ei. Bannai and Et. Bannai (2006) showed the following result:

Theorem 3
The scheme graph of a **primitive** (i.e. all non-trivial relations are connected) association scheme with a multiplicity 3 is the tetrahedron.

N. Yamazaki (1998) studied the symmetric association schemes with a relation with valency three. He showed:

Theorem 4
Let \((X, R_0, \ldots, R_d)\) be a symmetric association scheme with a connecting relation \(R\) of valency 3. Then the association scheme is metric with respect to \(R\) (and its corresponding scheme graph is distance-regular), or the corresponding scheme graph is bipartite.
Outline

1. t-Walk-regular graphs
 - Definitions
 - Examples
 - Partially distance-regular graphs

2. Some results
 - Adjacency algebra
 - Terwilliger

3. Examples with relatively many eigenvalues
 - A result of C. Dalfó et al.
 - Graphs from group divisible designs

4. Association schemes
 - Definitions
 - Examples

5. Multiplicity results
 - Multiplicity 3
 - Problems
We conclude this talk with some open problems.

- Are there only finitely many symmetric association schemes with a connecting relation with valency 3?

- For fixed $k \geq 3$, is 2-partially metric enough to show that there only finitely many symmetric association schemes with a connecting relation with valency k?
We conclude this talk with some open problems.

- Are there only finitely many symmetric association schemes with a connecting relation with valency 3?
- For fixed \(k \geq 3 \), is 2-partially metric enough to show that there only finitely many symmetric association schemes with a connecting relation with valency \(k \)?
- Find more examples of 3-partially metric symmetric schemes, which are not metric. On this moment we only know of about 3 or 4 examples.
- Find 2-walk-regular graphs which are locally connected. On this moment we do not have any example which is not distance-regular.
Thank you for your attention.