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Definitions

Let Γ = (V ,E ) be a graph.

The distance d(x , y) between two vertices x and y is the length of a
shortest path connecting them.

The maximum distance between two vertices in Γ is the diameter
D = D(Γ).

The valency of x is the number of vertices adjacent to it.

A graph is regular with valency k if each vertex has k neighbors.

The adjacency matrix A of Γ is the matrix whose rows and columns
are indexed by the vertices of Γ and the (x , y)-entry is 1 whenever x
and y are adjacent and 0 otherwise.

The eigenvalues of the graph Γ are the eigenvalues of A.
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t-Walk-regular graphs

A graph Γ is called t-walk-regular if the number of walks of length `
between vertices x and y only depends on the distance between x
and y and `, provided that such a distance does not exceed t.

t-Walk-regular graphs are generalizations of distance-regular graphs.
Many results on distance-regular graphs can be extended to the class
of 2-walk-regular graphs, especially those results that uses Euclidean
representations.
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Examples 1

There are many examples of m-walk-regular graphs that are not
distance-regular.

The bipartite double of the dodecahedron is 3-walk-regular but not
4-walk-regular. (Bipartite double: For every vertex x create two
vertices x+ and x− and if x ∼ y then xε ∼ yδ if εδ = −.)

m-Arc transitive graphs are at least m-walk-regular.
(m-Arc-transitive graphs have an automorphism group transitive on
the m-arcs, i.e. (m + 1)-tuples (x0, x1, . . . , xm) such that xi ∼ xi+1

and xi−1 6= xi+1)

But there are t-arc-transitive graphs which are t + 1-walk-regular.
For example all 1-arc-transitive cubic graphs are 2-walk-regular.

Any cubic graph is at most 5-arc-transitive (Tutte) and there are
infinitely many connected non-isomorphic cubic 5-arc-transitive
graphs.

Any k-regular graph is at most 7-arc-transitive (Weiss) and there are
infinitely many connected non-isomorphic 7-arc-transitive 4-regular
graphs (Conder and Walker(1998))
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Examples 2

Two generalizations of m-arc-transitive graphs:

Partially m-distance-transitive graphs: Connected graph with
diameter at least m such that for any quadruple of vertices
x1, x2, y1, y2 with d(x1, x2) = d(y1, y2) ≤ m there is an
automorphism τ such that xτi = yi (i = 1, 2).

Praeger et al. (2010) also introduced the notion of
m-geodetically-transitive graphs, i.e. the automorphism group is
transitive on the (m + 1)-tupels (x0, x1, . . . , xm) with xi ∼ xi+1 and
d(x0, xm) = m.
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Question:

Are there partially m-distance-transitive graphs Γ which are are not
(m + 1)-distance-transitive with m < diam(Γ) with m large?

The same question for m-geodetically-transitive graphs.
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Let Γ be a connected graph, say with diameter D.

Let Γi (x) := {y ∈ V (Γ) | d(x , y) = i}.

We say Γ is t-partially distance-regular (t ≤ D) (with partial
intersection array ι = {b0, . . . , bt ; c1 = 1, c2, . . . , ct}) if
#Γi−1(y) ∩ Γ1(x) = ci and #Γi+1(y) ∩ Γ1(x) = bi for
d(x , y) = i ≤ t with the understanding that bD = 0.

If t = D, the graph is called distance-regular.
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A distance-regular graph with diameter D is D-walk-regular
(Rowlinson).

t-Walk-regularity is a global condition and t-partially
distance-regularity is local condition.

The last condition is much weaker then the first. Example: Take the
folded n-cube Q̃(n), i.e. you take the n-cube and you identify the
antipodes. Take the cartesian product K2 × Q̃(n). The resulting
graph is about n/2-partially distance-regular but not even
1-walk-regular.
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Graphs from group divisible designs

4 Association schemes
Definitions
Examples

5 Multiplicity results
Multiplicity 3
Problems



t-Walk-regular graphs Some results Examples with relatively many eigenvalues Association schemes Multiplicity results

Adjacency algebra

In this part of the talk we will show that some results on distance-regular
graphs can be extended to 2-walk-regular graphs (but not to
1-walk-regular graphs).

First we need to look at the adjacency algebra for an m-walk-regular
graph.

Γ a graph with adjacency matrix A.

The adjacency algebra A is the matrix algebra generated by A, i.e.
the algebra consisting of all polynomials in A with coefficients in the
real field.

Assume that Γ has distinct eigenvalues θ0 > θ1 > · · · > θd .

Then dim(A) = d + 1 and A has primitive idempotents Ei ,
i = 0, 1, . . . , d such that AEi = θiEi .
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Adjacency algebra 2

Let Γ be a connected graph, say with diameter D.

Let Ai be the distance-i matrix, i.e. (Ai )xy = 1 if d(x , y) = i and 0
otherwise.

Let m ≤ D.

Then Γ is m-walk-regular if and only if Ai ◦ Ej = cijAi for some
scalar cij for all 0 ≤ i ≤ m and 0 ≤ j ≤ d .

Note a 0-walk-regular graph is regular say with valency k(= b0).
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Terwilliger 1

Now I will give some results of Terwilliger that can be generalised to
2-walk-regular graphs.
The local subgraph of a graph Γ in a vertex x , ∆(x), is the subgraph
induced on the neighbours of x .

.

Theorem

Let Γ be a connected 2-walk-regular graph with distinct eigenvalues
k = θ0 > θ1 > · · · > θd . Let x be a vertex of Γ and let ∆(x) has
eigenvalues a1 = η1 ≥ η2 ≥ . . . ≥ ηk .
Then b− := −1− b1

1+θ1
≤ ηk ≤ η2 ≤ b+ := −1− b1

1+θd
.
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Terwilliger 2

If one of the multiplicities is small we can say more.

Theorem

Let Γ be a connected coconnected (i.e. its complement is connected as
well) 2-walk-regular graph with distinct eigenvalues
k = θ0 > θ1 > · · · > θd with respective multiplicities m0 = 1,m1, . . . ,md .
If mi < k for 1 ≤ i ≤ d then

i = 1 or i = d .

−1− b1
1+θi

is an eigenvalue of ∆(x) with multiplicity at least k −mi .

(Godsil) k ≤ (mi + 2)(mi − 1)/2.
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C. Dalfó et al. (2011) showed the following result.

Proposition

Let s, d be positive integers. Let Γ be a connected s-walk-regular graph
with diameter D ≥ s and with exactly d + 1 distinct eigenvalues. Then
the following hold:

If d ≤ s + 1, then Γ is distance-regular;

If d ≤ s + 2 and Γ is bipartite, then Γ is distance-regular.

Later we will construct infinitely many bipartite 2-walk-regular graphs
with 6 eigenvalues, which are not distance-regular. So this shows that we
can not do better for s = 2 in the second item.
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Let us first find a 2-walk-regular graph with 5 distinct eigenvalues.

Let O4 be the Odd graph with valency 4.

It has 35 vertices and distinct eigenvalues 4, 2,−1,−3.

Consider the line graph Λ of O4.

Then it easy to see that Λ is 2-partially distance-transitive, so
2-walk-regular.

It is easy to calculate that Λ has exactly 5 distinct eigenvalues
6, 4, 1,−1 and −2.

This shows that we found a 2-walk-regular graph with 5 distinct
eigenvalues, which is not distance-regular.

It is an open problem, whether there exist infinitely many
2-walk-regular graphs with exactly 5 distinct eigenvalues, which are
not distance-regular.

One way to construct them is to construct non-bipartite
distance-regular graphs with diameter 3 and girth 6, and then take
its line graph.
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Then it easy to see that Λ is 2-partially distance-transitive, so
2-walk-regular.

It is easy to calculate that Λ has exactly 5 distinct eigenvalues
6, 4, 1,−1 and −2.

This shows that we found a 2-walk-regular graph with 5 distinct
eigenvalues, which is not distance-regular.

It is an open problem, whether there exist infinitely many
2-walk-regular graphs with exactly 5 distinct eigenvalues, which are
not distance-regular.

One way to construct them is to construct non-bipartite
distance-regular graphs with diameter 3 and girth 6, and then take
its line graph.
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Classical examples

The following examples of group divisible designs where found by
Bose in the 1940’s.

Let r ≥ 2 be an integer and let q be a prime power.

Let V be a vector space of dimension r over the finite field with q
elements, GF(q).

Let X be the set of non-zero elements of V .

For x ∈ X , let Gx = {αx | α ∈ GF∗(q) :=GF(q) \ {0}} and
G := {Gx | x ∈ X}.
Let B := {x + H | x ∈ X ,H a hyperplane in V , x 6∈ H}, where
x + H = {x + h | h ∈ H}, the set of affine hyperplanes.

Take two distinct elements in X . If they are linearly dependent then
there is no proper affine hyperplane they lie together in.

If they are linearly independent then there are exactly qr−2 proper
affine hyperplanes they lie together in.

This shows:
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The design D(r , q) := (X ,G,B) is a group divisible design with the

dual property with parameters (q − 1, q
r−1
q−1 ; qr−1; 0, qr−2), or in

other words a GDDDP(q − 1, q
r−1
q−1 ; qr−1; 0, qr−2). (The dual

property means that we can interchange the role of points and
blocks to obtain a design with the same parameters).

It is clear that the general linear group GL(r , q) acts as a group of
automorphisms of D(r , q) such that its subgroup Z := {αIr | α ∈
GF∗(q)} fixes the set Gx for all x ∈ X .

Let a be a primitive element of GF∗(qr ).

Observe that ( GF∗(qr ), ·) = 〈a〉 is a cyclic group of order qr − 1.

As we can consider GF(qr ) as a vector space of dimension r over
GF(q), with basis {ai | i = 0, 1, 2, . . . , r − 1}.
Now define the map τa ∈GL(r , q) by τa(x) = ax for x ∈ GF∗(qr ).

Then τa generates a cyclic subgroup C of order qr − 1 in GL(r , q).

This shows that there is a cyclic group (the Singer group) of
automorphisms that acts regularly on the points of the design. We
will need this later.
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Some 2-arc transitive graphs

Now we are going to construct a graph Γ(r , q) from the design
D(r , q) := (X ,G,B).

The graph Γ(r , q) has as vertex set X ∪ B.

x ∈ X is adjacent to B ∈ B if x lies in B.

This clearly gives a bipartite graph.

It is not so difficult to see that Γ(r , q) has exactly 6 distinct
eigenvalues and is 2-arc-transitive, so, in particular, it is
2-walk-regular.

You can construct other GDDDP from these examples by
considering certain subgroups of C .

It can be shown that the graphs Γ(r , q) are 2-arc-transitive
dihedrants, using the Singer group.

Du et al. classified the 2-arc-transitive dihedrants, but in their
classification they did not have the graphs Γ(r , q) with q even.

D(r , q) can also be constructed using relative difference sets. That
is how we found the examples of Bose.



t-Walk-regular graphs Some results Examples with relatively many eigenvalues Association schemes Multiplicity results

Some 2-arc transitive graphs

Now we are going to construct a graph Γ(r , q) from the design
D(r , q) := (X ,G,B).

The graph Γ(r , q) has as vertex set X ∪ B.

x ∈ X is adjacent to B ∈ B if x lies in B.

This clearly gives a bipartite graph.

It is not so difficult to see that Γ(r , q) has exactly 6 distinct
eigenvalues and is 2-arc-transitive, so, in particular, it is
2-walk-regular.

You can construct other GDDDP from these examples by
considering certain subgroups of C .

It can be shown that the graphs Γ(r , q) are 2-arc-transitive
dihedrants, using the Singer group.

Du et al. classified the 2-arc-transitive dihedrants, but in their
classification they did not have the graphs Γ(r , q) with q even.

D(r , q) can also be constructed using relative difference sets. That
is how we found the examples of Bose.



t-Walk-regular graphs Some results Examples with relatively many eigenvalues Association schemes Multiplicity results

Some 2-arc transitive graphs

Now we are going to construct a graph Γ(r , q) from the design
D(r , q) := (X ,G,B).

The graph Γ(r , q) has as vertex set X ∪ B.

x ∈ X is adjacent to B ∈ B if x lies in B.

This clearly gives a bipartite graph.

It is not so difficult to see that Γ(r , q) has exactly 6 distinct
eigenvalues and is 2-arc-transitive, so, in particular, it is
2-walk-regular.

You can construct other GDDDP from these examples by
considering certain subgroups of C .

It can be shown that the graphs Γ(r , q) are 2-arc-transitive
dihedrants, using the Singer group.

Du et al. classified the 2-arc-transitive dihedrants, but in their
classification they did not have the graphs Γ(r , q) with q even.

D(r , q) can also be constructed using relative difference sets. That
is how we found the examples of Bose.



t-Walk-regular graphs Some results Examples with relatively many eigenvalues Association schemes Multiplicity results

Some 2-arc transitive graphs

Now we are going to construct a graph Γ(r , q) from the design
D(r , q) := (X ,G,B).

The graph Γ(r , q) has as vertex set X ∪ B.

x ∈ X is adjacent to B ∈ B if x lies in B.

This clearly gives a bipartite graph.

It is not so difficult to see that Γ(r , q) has exactly 6 distinct
eigenvalues and is 2-arc-transitive, so, in particular, it is
2-walk-regular.

You can construct other GDDDP from these examples by
considering certain subgroups of C .

It can be shown that the graphs Γ(r , q) are 2-arc-transitive
dihedrants, using the Singer group.

Du et al. classified the 2-arc-transitive dihedrants, but in their
classification they did not have the graphs Γ(r , q) with q even.

D(r , q) can also be constructed using relative difference sets. That
is how we found the examples of Bose.



t-Walk-regular graphs Some results Examples with relatively many eigenvalues Association schemes Multiplicity results

Some 2-arc transitive graphs

Now we are going to construct a graph Γ(r , q) from the design
D(r , q) := (X ,G,B).

The graph Γ(r , q) has as vertex set X ∪ B.

x ∈ X is adjacent to B ∈ B if x lies in B.

This clearly gives a bipartite graph.

It is not so difficult to see that Γ(r , q) has exactly 6 distinct
eigenvalues and is 2-arc-transitive, so, in particular, it is
2-walk-regular.

You can construct other GDDDP from these examples by
considering certain subgroups of C .

It can be shown that the graphs Γ(r , q) are 2-arc-transitive
dihedrants, using the Singer group.

Du et al. classified the 2-arc-transitive dihedrants, but in their
classification they did not have the graphs Γ(r , q) with q even.

D(r , q) can also be constructed using relative difference sets. That
is how we found the examples of Bose.



t-Walk-regular graphs Some results Examples with relatively many eigenvalues Association schemes Multiplicity results

Outline

1 t-Walk-regular graphs
Definitions
Examples
Partially distance-regular graphs

2 Some results
Adjacency algebra
Terwilliger

3 Examples with relatively many eigenvalues
A result of C. Dalfó et al.
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Definitions 1

Let X be a finite set with n elements. A association scheme is a pair
(X ,R) such that

(i) R = {R0,R1, · · · ,Rd} is a partition of X × X ,

(ii) R0 = ∆ := {(x , x)|x ∈ X},
(iii) for each i (0 ≤ i ≤ d) there exists j such that Ri = RT

j ,
i.e., if (x , y) ∈ Ri then (y , x) ∈ Rj ,

(iv) there are numbers phij (the intersection numbers of (X ,R))
such that for any pair (x , y) ∈ Rh the number of z ∈ X
with (x , z) ∈ Ri and (z , y) ∈ Rj equals phij .

The elements Ri are called the relations of (X ,R) and the number
d + 1 of relations is called the rank of (X ,R).

If RT
i = Ri , then we call the relation Ri symmetric.

If all relations are symmetric, we call the scheme symmetric.
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Definitions 2

Let Ai be the relation matrix with respect to Ri such that the rows
and the columns of Ai are indexed by the elements of X and the
(x , y)-entry is 1 whenever (x , y) ∈ Ri and 0 otherwise.

Then the conditions (i)-(iv) are expressed by:

(i)′
d∑

i=0

Ai = J, where J is the all-one matrix,

(ii)′ A0 = I , where I is the identity matrix,

(iii)′ For all i there exists j such that (Ai )
T = Aj ,

(iv)′ AiAj =
d∑

h=0

phijAh.

The Bose-Mesner Algebra M is the matrix algebra generated by the
relation matrices (over C).

M has a basis of primitive idempotents called scheme idempotents
if the scheme is symmetric.
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Definitions 3

An association scheme (X ,R) with rank d + 1 is called t-partially
metric (with respect to a symmetric relation R) if there exists an
ordering of the relation matrices A0 = I ,A1, · · · ,Ad such that Ai is
a polynomial of degree i in A for i = 1, 2, . . . , t, where A is the
relation matrix of R.

Note that A1 = A as the relation matrices are (0, 1)-matrices and
that we assume that if (X ,R) is t-partially metric, then we always
assume to have this ordering of the relation matrices
A0 = I ,A1, · · · ,Ad such that Ai is a polynomial of degree i in A for
i = 1, 2, . . . , t.

A (symmetric) association scheme with rank d + 1 is called metric if
it is d-partially metric.
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Definitions 4

We are going to construct graphs from association schemes.

A graph Γ is called the scheme graph of (X ,R) (with respect to R)
if the adjacency matrix A of Γ is equal to the relation matrix of R.
In this case, we call the relation R the corresponding relation of Γ.

We call the relation R connected if the corresponding scheme graph
is connected.

If relation R is the corresponding relation for a t-partially metric
scheme, then the corresponding scheme graph is t-walk-regular.

If the scheme is metric then the corresponding scheme graph is
distance-regular.
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Bipartite double

The bipartite double of an association scheme (X ,R0,R1, . . . ,Rd) is
the scheme (X × {+,−},R+

0 ,R
−
0 , . . . ,R

+
d ,R

−
d ), where (x , ε) and

(y , δ) are in relation Rεδ
i when x , y are in relation Ri .

If Γ is the scheme graph Γ of relation Ri in the original scheme, then
the scheme graph of relation R−i is the bipartite double of Γ.
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Examples 1

Most of the 2-partially metric association schemes come from groups. I
will describe the scheme graphs of some examples.

The t-arc-transitive graphs are scheme graphs of t-partially metric
association schemes, but those schemes are usually not symmetric.
These graphs have c2 = 1 if t ≥ 2.

The bipartite double of the dodecahedron is the scheme graph of
two different symmetric association schemes, namely the bipartite
double scheme BD of the metric scheme of the dodecahedron and a
fusion scheme of BD. The scheme BD is 2-partially metric, whereas
the latter scheme is 3-partially metric.

The symmetric bilinear forms graphs SBF(n, q) have as vertices the
n × n symmetric matrices over a finite field GF(q) (where q is a
prime power) and two matrices are adjacent if their difference has
rank 1. These graphs have c2 ≥ 2 and are locally the disjoint union
of cliques. For n ≥ 4 they are 2-distance-transitive but not
distance-regular.
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Examples 2

De Caen et al. found an infinite family of triangle-free
distance-regular antipodal graphs of diameter 3. If you take the
bipartite double of these graphs you obtain 2-walk-regular graphs
with c2 = 2 and a1 = 0. They are also the scheme graphs of the
bipartite double scheme of the underlying metric scheme, and this
scheme is 2-partially metric and symmetric.
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Examples from codes

Let C be a binary linear code, say of length n, i.e. a subspace of the
n-dim space GF(2)n.

Let Γ(C ) be the coset graph of C , i.e.the vertices are the cosets
x + C of C and two cosets are adjacent if there is an edge between
them in the Hamming graph.

If the minimum distance in C is at least 2t ≥ 2, then ci = i and
ai = 0 for i ≤ t.

But usually the coset graph Γ(C ) is not 2-walk-regular.

If the automorphism group of the code C acts 2-transitive on the
positions and the minimum weight is at 4, then Γ(C ) is partially
2-distance-transitive.
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Examples from codes 2

Let C be the truncated code of the even sub code of the Golay
code. Then Γ(C ) is distance-transitive.

The bipartite double of Γ(C ) is 3-distance-transitive, and is the
coset graph of the even sub code of C .

There are some more examples which can be constructed from
certain sub codes of the Golay, but those that are
3-distance-transitive are also distance-transitive.

Let C be the simplex t-dimensional code over the binary field, i.e.
the dual code of a Hamming code of length 2t − 1. Then the coset
graph Γ(C ) is 2-distance-transitive but not 3-walk-regular.

There are many more examples of coset graphs that are
2-distance-transitive. We are still working in this.
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Examples from designs

The graph Γ(r , q) constructed from the group divisible designs
above comes from a five-class association scheme.

Let D be a 2-design for which the automorphism group of the design
acts 2-transitive on the points.

Let C be the linear code generated by the support of the blocks.
Note it makes a difference here whether you look at the design or at
its complementary design, i.e. the blocks are the complements of
the blocks of the original design.

For example take as your design the projective plane of order a
power of 2. (For odd order you obtain the trivial code GF(2)n.) The
dimension of this code has been determined long ago by many
people. We can show the coset graph is 2-distance-transitive. We
are still trying to determine whether they are 3-walk-regular.
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2-Walk-regular graphs with multiplicity 3

Theorem 1 [2013,CDKP]

Let Γ be a 2-walk-regular graph, different from a complete multipartite
graph, with valency k ≥ 3 and eigenvalue θ 6= ±k with multiplicity 3.

Then Γ is a cubic graph with a1 = a2 = 0 (i.e. there are no triangles nor
pentagons), the dodecahedron, or the icosahedron.

Cubic 2-walk-regular graphs?????
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An family of cubic 2-walk-regular graphs with
multiplicity 3

In 2002, Feng and Kwak constructed a family of arc-transitive covers of
the cube as voltage graphs and this family gives an infinite family of
cubic 2-walk-regular graphs with eigenvalue ±1 with multiplicity 3.

By
considering the orbitals of the corresponding automorphism groups, we
obtain an infinite family of non-symmetric association schemes with a
connecting symmetric relation with valency 3, whose scheme graphs are
the above graphs.

But if you assume that the graph comes from a symmetric association
scheme with a connecting relation with valency 3, then we can classify
them.
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Symmetric association schemes with multiplicity 3

Our Result:

Theorem 2

Let (X ,R) be a 2-partially metric association scheme with corresponding
relation R, corresponding valency k ≥ 3 and rank d + 1 ≥ 3. Let
E0,E1 · · · ,Ed be the minimal scheme idempotents with corresponding
eigenvalues θ0 = k , θ1 . . . , θd and multiplicities m0 = 1,m1, . . . ,md

respectively. Let Γ be the scheme graph of (X ,R). If there exists an
integer i (1 ≤ i ≤ d) such that mi = 3, then one of the following holds:
(i) Γ is the cube,
(ii) Γ is the Möbius-Kantor graph (a 2-cover of the cube),
(iii) Γ is the Nauru graph (a 3-cover of the cube),
(iv) Γ is the dodecahedron,
(v) Γ is the bipartite double of the dodecahedron,
(vi) Γ is the icosahedron,
(vii) Γ is the octahedron,
(viii) Γ is a regular complete 4-partite graph.
Moreover, the association scheme is uniquely determined by Γ.
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Remarks

The bipartite double of the dodecahedron has no eigenvalue with
multiplicity 3. As I remarked earlier, there are two symmetric
2-partially metric association schemes with this graph as its scheme
graphs, namely the bipartite double scheme of the dodecahedron
and a fusion scheme of this scheme.

The first scheme has four minimal idempotents with multiplicity 3,
two of them have corresponding eigenvalue

√
5 and two of them

have corresponding eigenvalue −
√

5.

If the valency k equals three, then we do not need to assume that
the scheme is 2-partially metric, as that is implied by a result of N.
Yamazaki (1998).

The theorem is not true for symmetric association schemes (which
are not 2-partially metric), as the t-coclique extensions of the
dodecahedron show. (In this case the smallest non-trivial valency is
equal to 3t)
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Related work

Ei. Bannai and Et. Bannai (2006) showed the following result:

Theorem 3

The scheme graph of a primitive (i.e all non-trivial relations are
connected) association scheme with a multiplicity 3 is the tetrahedron.

N. Yamazaki (1998) studied the symmetric association schemes with a
relation with valency three. He showed:

Theorem 4

Let (X ,R0, . . . ,Rd) be a symmetric association scheme with a connecting
relation R of valency 3. Then the association scheme is metric with
respect to R (and its corresponding scheme graph is distance-regular), or
the corresponding scheme graph is bipartite.
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Problems

We conclude this talk with some open problems.

Are there only finitely many symmetric association schemes with a
connecting relation with valency 3?

For fixed k ≥ 3, is 2-partially metric enough to show that there only
finitely many symmetric association schemes with a connecting
relation with valency k?

Find more examples of 3-partially metric symmetric schemes, which
are not metric. On this moment we only know of about 3 or 4
examples.

Find 2-walk-regular graphs which are locally connected. On this
moment we do not have any example which is not distance-regular.
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Thank you for your attention.
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